Cargando…

Effect of Six Insecticides on Egg Hatching and Larval Mortality of Trogoderma granarium Everts (Coleoptera: Dermestidae)

The khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is one of the most destructive insect species of stored food worldwide and is subjected to strict phytosanitary legislations. In the present study, we evaluated the egg hatching and larval mortality of T. granarium on concrete...

Descripción completa

Detalles Bibliográficos
Autores principales: Boukouvala, Maria C., Kavallieratos, Nickolas G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291318/
https://www.ncbi.nlm.nih.gov/pubmed/32344913
http://dx.doi.org/10.3390/insects11050263
Descripción
Sumario:The khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is one of the most destructive insect species of stored food worldwide and is subjected to strict phytosanitary legislations. In the present study, we evaluated the egg hatching and larval mortality of T. granarium on concrete surfaces treated with six insecticides (i.e., α-cypermethrin, chlorfenapyr, deltamethrin, pirimiphos-methyl, pyriproxyfen, and s-methoprene) that are registered in Greece for surface treatment and exhibit a broad spectrum of different modes of action. Furthermore, we investigated the influence of the presence of food on egg hatching and larval mortality. Egg hatchability on treated concrete was higher in tests with the presence of food for all tested insecticides, with the exception of s-methoprene. In contrast, larval mortality was lower in treatments where there was nourishment for all insecticides. No egg hatching was recorded on concrete treated with pirimiphos-methyl where there was no food, while with the addition of food, the egg hatching did not exceeded 26.7% after 6 days of exposure. The highest percentage of hatched eggs was recorded on concrete treated with chlorfenapyr (87.7% with food vs. 76.7% without food), followed by deltamethrin (76.7% with food vs. 63.3% without food), pyriproxyfen (50.0% with food vs. 42.2% without food), and α-cypermethrin (28.9% with food vs. 6.7% without food). In the case of s-methoprene, more eggs were hatched in the absence of food (91.1%) in contrast to in the presence of food (86.7%). Regarding mortality, all larvae were dead after 5 days of exposure on pirimiphos-methyl-treated concrete with food. Furthermore, larvae died faster in treatments without food. For α-cypermethrin, 100% mortality was recorded after 4 days of exposure, while with presence of food, all larvae died after 6 days. Chlorfenapyr caused complete mortality of larvae after 5 days of exposure on concrete without food and after 8 days with food. In the case of deltamethrin, 100% mortality was recorded after 7 days in the absence of food and 8 days in the presence of food. Regarding pyriproxyfen, complete mortality was not recorded when food was present, reaching 94.1% 14 days postexposure. However, after 12 days, all larvae died in treatments without food. Although egg hatching was higher in the case of s-methoprene on concrete without food, larval mortality was 100% after 8 days of exposure. Nevertheless, when there was food, 87.3% of the exposed larvae died after 13 days. Therefore, it becomes evident that sanitation of storage facilities before the application of contact insecticides is a key factor for the successful control of T. granarium in the egg stage.