Cargando…

Deconvolution of bulk blood eQTL effects into immune cell subpopulations

BACKGROUND: Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-context of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Aguirre-Gamboa, Raúl, de Klein, Niek, di Tommaso, Jennifer, Claringbould, Annique, van der Wijst, Monique GP, de Vries, Dylan, Brugge, Harm, Oelen, Roy, Võsa, Urmo, Zorro, Maria M., Chu, Xiaojin, Bakker, Olivier B., Borek, Zuzanna, Ricaño-Ponce, Isis, Deelen, Patrick, Xu, Cheng-Jiang, Swertz, Morris, Jonkers, Iris, Withoff, Sebo, Joosten, Irma, Sanna, Serena, Kumar, Vinod, Koenen, Hans J. P. M., Joosten, Leo A. B., Netea, Mihai G., Wijmenga, Cisca, Franke, Lude, Li, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291428/
https://www.ncbi.nlm.nih.gov/pubmed/32532224
http://dx.doi.org/10.1186/s12859-020-03576-5
_version_ 1783545904087695360
author Aguirre-Gamboa, Raúl
de Klein, Niek
di Tommaso, Jennifer
Claringbould, Annique
van der Wijst, Monique GP
de Vries, Dylan
Brugge, Harm
Oelen, Roy
Võsa, Urmo
Zorro, Maria M.
Chu, Xiaojin
Bakker, Olivier B.
Borek, Zuzanna
Ricaño-Ponce, Isis
Deelen, Patrick
Xu, Cheng-Jiang
Swertz, Morris
Jonkers, Iris
Withoff, Sebo
Joosten, Irma
Sanna, Serena
Kumar, Vinod
Koenen, Hans J. P. M.
Joosten, Leo A. B.
Netea, Mihai G.
Wijmenga, Cisca
Franke, Lude
Li, Yang
author_facet Aguirre-Gamboa, Raúl
de Klein, Niek
di Tommaso, Jennifer
Claringbould, Annique
van der Wijst, Monique GP
de Vries, Dylan
Brugge, Harm
Oelen, Roy
Võsa, Urmo
Zorro, Maria M.
Chu, Xiaojin
Bakker, Olivier B.
Borek, Zuzanna
Ricaño-Ponce, Isis
Deelen, Patrick
Xu, Cheng-Jiang
Swertz, Morris
Jonkers, Iris
Withoff, Sebo
Joosten, Irma
Sanna, Serena
Kumar, Vinod
Koenen, Hans J. P. M.
Joosten, Leo A. B.
Netea, Mihai G.
Wijmenga, Cisca
Franke, Lude
Li, Yang
author_sort Aguirre-Gamboa, Raúl
collection PubMed
description BACKGROUND: Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-context of the eQTL regulatory effects. Although this context can be investigated by generating transcriptional profiles from purified cell subpopulations, current methods to do this are labor-intensive and expensive. We introduce a new method, Decon2, as a framework for estimating cell proportions using expression profiles from bulk blood samples (Decon-cell) followed by deconvolution of cell type eQTLs (Decon-eQTL). RESULTS: The estimated cell proportions from Decon-cell agree with experimental measurements across cohorts (R ≥ 0.77). Using Decon-cell, we could predict the proportions of 34 circulating cell types for 3194 samples from a population-based cohort. Next, we identified 16,362 whole-blood eQTLs and deconvoluted cell type interaction (CTi) eQTLs using the predicted cell proportions from Decon-cell. CTi eQTLs show excellent allelic directional concordance with eQTL (≥ 96–100%) and chromatin mark QTL (≥87–92%) studies that used either purified cell subpopulations or single-cell RNA-seq, outperforming the conventional interaction effect. CONCLUSIONS: Decon2 provides a method to detect cell type interaction effects from bulk blood eQTLs that is useful for pinpointing the most relevant cell type for a given complex disease. Decon2 is available as an R package and Java application (https://github.com/molgenis/systemsgenetics/tree/master/Decon2) and as a web tool (www.molgenis.org/deconvolution).
format Online
Article
Text
id pubmed-7291428
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-72914282020-06-12 Deconvolution of bulk blood eQTL effects into immune cell subpopulations Aguirre-Gamboa, Raúl de Klein, Niek di Tommaso, Jennifer Claringbould, Annique van der Wijst, Monique GP de Vries, Dylan Brugge, Harm Oelen, Roy Võsa, Urmo Zorro, Maria M. Chu, Xiaojin Bakker, Olivier B. Borek, Zuzanna Ricaño-Ponce, Isis Deelen, Patrick Xu, Cheng-Jiang Swertz, Morris Jonkers, Iris Withoff, Sebo Joosten, Irma Sanna, Serena Kumar, Vinod Koenen, Hans J. P. M. Joosten, Leo A. B. Netea, Mihai G. Wijmenga, Cisca Franke, Lude Li, Yang BMC Bioinformatics Methodology Article BACKGROUND: Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-context of the eQTL regulatory effects. Although this context can be investigated by generating transcriptional profiles from purified cell subpopulations, current methods to do this are labor-intensive and expensive. We introduce a new method, Decon2, as a framework for estimating cell proportions using expression profiles from bulk blood samples (Decon-cell) followed by deconvolution of cell type eQTLs (Decon-eQTL). RESULTS: The estimated cell proportions from Decon-cell agree with experimental measurements across cohorts (R ≥ 0.77). Using Decon-cell, we could predict the proportions of 34 circulating cell types for 3194 samples from a population-based cohort. Next, we identified 16,362 whole-blood eQTLs and deconvoluted cell type interaction (CTi) eQTLs using the predicted cell proportions from Decon-cell. CTi eQTLs show excellent allelic directional concordance with eQTL (≥ 96–100%) and chromatin mark QTL (≥87–92%) studies that used either purified cell subpopulations or single-cell RNA-seq, outperforming the conventional interaction effect. CONCLUSIONS: Decon2 provides a method to detect cell type interaction effects from bulk blood eQTLs that is useful for pinpointing the most relevant cell type for a given complex disease. Decon2 is available as an R package and Java application (https://github.com/molgenis/systemsgenetics/tree/master/Decon2) and as a web tool (www.molgenis.org/deconvolution). BioMed Central 2020-06-12 /pmc/articles/PMC7291428/ /pubmed/32532224 http://dx.doi.org/10.1186/s12859-020-03576-5 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Methodology Article
Aguirre-Gamboa, Raúl
de Klein, Niek
di Tommaso, Jennifer
Claringbould, Annique
van der Wijst, Monique GP
de Vries, Dylan
Brugge, Harm
Oelen, Roy
Võsa, Urmo
Zorro, Maria M.
Chu, Xiaojin
Bakker, Olivier B.
Borek, Zuzanna
Ricaño-Ponce, Isis
Deelen, Patrick
Xu, Cheng-Jiang
Swertz, Morris
Jonkers, Iris
Withoff, Sebo
Joosten, Irma
Sanna, Serena
Kumar, Vinod
Koenen, Hans J. P. M.
Joosten, Leo A. B.
Netea, Mihai G.
Wijmenga, Cisca
Franke, Lude
Li, Yang
Deconvolution of bulk blood eQTL effects into immune cell subpopulations
title Deconvolution of bulk blood eQTL effects into immune cell subpopulations
title_full Deconvolution of bulk blood eQTL effects into immune cell subpopulations
title_fullStr Deconvolution of bulk blood eQTL effects into immune cell subpopulations
title_full_unstemmed Deconvolution of bulk blood eQTL effects into immune cell subpopulations
title_short Deconvolution of bulk blood eQTL effects into immune cell subpopulations
title_sort deconvolution of bulk blood eqtl effects into immune cell subpopulations
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291428/
https://www.ncbi.nlm.nih.gov/pubmed/32532224
http://dx.doi.org/10.1186/s12859-020-03576-5
work_keys_str_mv AT aguirregamboaraul deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT dekleinniek deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT ditommasojennifer deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT claringbouldannique deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT vanderwijstmoniquegp deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT devriesdylan deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT bruggeharm deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT oelenroy deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT vosaurmo deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT zorromariam deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT chuxiaojin deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT bakkerolivierb deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT borekzuzanna deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT ricanoponceisis deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT deelenpatrick deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT xuchengjiang deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT swertzmorris deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT jonkersiris deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT withoffsebo deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT joostenirma deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT sannaserena deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT kumarvinod deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT koenenhansjpm deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT joostenleoab deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT neteamihaig deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT wijmengacisca deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT frankelude deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT liyang deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations