Cargando…
Deconvolution of bulk blood eQTL effects into immune cell subpopulations
BACKGROUND: Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-context of the...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291428/ https://www.ncbi.nlm.nih.gov/pubmed/32532224 http://dx.doi.org/10.1186/s12859-020-03576-5 |
_version_ | 1783545904087695360 |
---|---|
author | Aguirre-Gamboa, Raúl de Klein, Niek di Tommaso, Jennifer Claringbould, Annique van der Wijst, Monique GP de Vries, Dylan Brugge, Harm Oelen, Roy Võsa, Urmo Zorro, Maria M. Chu, Xiaojin Bakker, Olivier B. Borek, Zuzanna Ricaño-Ponce, Isis Deelen, Patrick Xu, Cheng-Jiang Swertz, Morris Jonkers, Iris Withoff, Sebo Joosten, Irma Sanna, Serena Kumar, Vinod Koenen, Hans J. P. M. Joosten, Leo A. B. Netea, Mihai G. Wijmenga, Cisca Franke, Lude Li, Yang |
author_facet | Aguirre-Gamboa, Raúl de Klein, Niek di Tommaso, Jennifer Claringbould, Annique van der Wijst, Monique GP de Vries, Dylan Brugge, Harm Oelen, Roy Võsa, Urmo Zorro, Maria M. Chu, Xiaojin Bakker, Olivier B. Borek, Zuzanna Ricaño-Ponce, Isis Deelen, Patrick Xu, Cheng-Jiang Swertz, Morris Jonkers, Iris Withoff, Sebo Joosten, Irma Sanna, Serena Kumar, Vinod Koenen, Hans J. P. M. Joosten, Leo A. B. Netea, Mihai G. Wijmenga, Cisca Franke, Lude Li, Yang |
author_sort | Aguirre-Gamboa, Raúl |
collection | PubMed |
description | BACKGROUND: Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-context of the eQTL regulatory effects. Although this context can be investigated by generating transcriptional profiles from purified cell subpopulations, current methods to do this are labor-intensive and expensive. We introduce a new method, Decon2, as a framework for estimating cell proportions using expression profiles from bulk blood samples (Decon-cell) followed by deconvolution of cell type eQTLs (Decon-eQTL). RESULTS: The estimated cell proportions from Decon-cell agree with experimental measurements across cohorts (R ≥ 0.77). Using Decon-cell, we could predict the proportions of 34 circulating cell types for 3194 samples from a population-based cohort. Next, we identified 16,362 whole-blood eQTLs and deconvoluted cell type interaction (CTi) eQTLs using the predicted cell proportions from Decon-cell. CTi eQTLs show excellent allelic directional concordance with eQTL (≥ 96–100%) and chromatin mark QTL (≥87–92%) studies that used either purified cell subpopulations or single-cell RNA-seq, outperforming the conventional interaction effect. CONCLUSIONS: Decon2 provides a method to detect cell type interaction effects from bulk blood eQTLs that is useful for pinpointing the most relevant cell type for a given complex disease. Decon2 is available as an R package and Java application (https://github.com/molgenis/systemsgenetics/tree/master/Decon2) and as a web tool (www.molgenis.org/deconvolution). |
format | Online Article Text |
id | pubmed-7291428 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-72914282020-06-12 Deconvolution of bulk blood eQTL effects into immune cell subpopulations Aguirre-Gamboa, Raúl de Klein, Niek di Tommaso, Jennifer Claringbould, Annique van der Wijst, Monique GP de Vries, Dylan Brugge, Harm Oelen, Roy Võsa, Urmo Zorro, Maria M. Chu, Xiaojin Bakker, Olivier B. Borek, Zuzanna Ricaño-Ponce, Isis Deelen, Patrick Xu, Cheng-Jiang Swertz, Morris Jonkers, Iris Withoff, Sebo Joosten, Irma Sanna, Serena Kumar, Vinod Koenen, Hans J. P. M. Joosten, Leo A. B. Netea, Mihai G. Wijmenga, Cisca Franke, Lude Li, Yang BMC Bioinformatics Methodology Article BACKGROUND: Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-context of the eQTL regulatory effects. Although this context can be investigated by generating transcriptional profiles from purified cell subpopulations, current methods to do this are labor-intensive and expensive. We introduce a new method, Decon2, as a framework for estimating cell proportions using expression profiles from bulk blood samples (Decon-cell) followed by deconvolution of cell type eQTLs (Decon-eQTL). RESULTS: The estimated cell proportions from Decon-cell agree with experimental measurements across cohorts (R ≥ 0.77). Using Decon-cell, we could predict the proportions of 34 circulating cell types for 3194 samples from a population-based cohort. Next, we identified 16,362 whole-blood eQTLs and deconvoluted cell type interaction (CTi) eQTLs using the predicted cell proportions from Decon-cell. CTi eQTLs show excellent allelic directional concordance with eQTL (≥ 96–100%) and chromatin mark QTL (≥87–92%) studies that used either purified cell subpopulations or single-cell RNA-seq, outperforming the conventional interaction effect. CONCLUSIONS: Decon2 provides a method to detect cell type interaction effects from bulk blood eQTLs that is useful for pinpointing the most relevant cell type for a given complex disease. Decon2 is available as an R package and Java application (https://github.com/molgenis/systemsgenetics/tree/master/Decon2) and as a web tool (www.molgenis.org/deconvolution). BioMed Central 2020-06-12 /pmc/articles/PMC7291428/ /pubmed/32532224 http://dx.doi.org/10.1186/s12859-020-03576-5 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Methodology Article Aguirre-Gamboa, Raúl de Klein, Niek di Tommaso, Jennifer Claringbould, Annique van der Wijst, Monique GP de Vries, Dylan Brugge, Harm Oelen, Roy Võsa, Urmo Zorro, Maria M. Chu, Xiaojin Bakker, Olivier B. Borek, Zuzanna Ricaño-Ponce, Isis Deelen, Patrick Xu, Cheng-Jiang Swertz, Morris Jonkers, Iris Withoff, Sebo Joosten, Irma Sanna, Serena Kumar, Vinod Koenen, Hans J. P. M. Joosten, Leo A. B. Netea, Mihai G. Wijmenga, Cisca Franke, Lude Li, Yang Deconvolution of bulk blood eQTL effects into immune cell subpopulations |
title | Deconvolution of bulk blood eQTL effects into immune cell subpopulations |
title_full | Deconvolution of bulk blood eQTL effects into immune cell subpopulations |
title_fullStr | Deconvolution of bulk blood eQTL effects into immune cell subpopulations |
title_full_unstemmed | Deconvolution of bulk blood eQTL effects into immune cell subpopulations |
title_short | Deconvolution of bulk blood eQTL effects into immune cell subpopulations |
title_sort | deconvolution of bulk blood eqtl effects into immune cell subpopulations |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291428/ https://www.ncbi.nlm.nih.gov/pubmed/32532224 http://dx.doi.org/10.1186/s12859-020-03576-5 |
work_keys_str_mv | AT aguirregamboaraul deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT dekleinniek deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT ditommasojennifer deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT claringbouldannique deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT vanderwijstmoniquegp deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT devriesdylan deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT bruggeharm deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT oelenroy deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT vosaurmo deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT zorromariam deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT chuxiaojin deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT bakkerolivierb deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT borekzuzanna deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT ricanoponceisis deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT deelenpatrick deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT xuchengjiang deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT swertzmorris deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT jonkersiris deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT withoffsebo deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT joostenirma deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT sannaserena deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT kumarvinod deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT koenenhansjpm deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT joostenleoab deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT neteamihaig deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT wijmengacisca deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT frankelude deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations AT liyang deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations |