Cargando…
SURF: integrative analysis of a compendium of RNA-seq and CLIP-seq datasets highlights complex governing of alternative transcriptional regulation by RNA-binding proteins
Advances in high-throughput profiling of RNA-binding proteins (RBPs) have resulted inCLIP-seq datasets coupled with transcriptome profiling by RNA-seq. However, analysis methods that integrate both types of data are lacking. We describe SURF, Statistical Utility for RBP Functions, for integrative an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291511/ https://www.ncbi.nlm.nih.gov/pubmed/32532357 http://dx.doi.org/10.1186/s13059-020-02039-7 |
Sumario: | Advances in high-throughput profiling of RNA-binding proteins (RBPs) have resulted inCLIP-seq datasets coupled with transcriptome profiling by RNA-seq. However, analysis methods that integrate both types of data are lacking. We describe SURF, Statistical Utility for RBP Functions, for integrative analysis of large collections of CLIP-seq and RNA-seq data. We demonstrate SURF’s ability to accurately detect differential alternative transcriptional regulation events and associate them to local protein-RNA interactions. We apply SURF to ENCODE RBP compendium and carry out downstream analysis with additional reference datasets. The results of this application are browsable at http://www.statlab.wisc.edu/shiny/surf/. |
---|