Cargando…
Treatment with a PPAR-γ Agonist Protects Against Hyperuricemic Nephropathy in a Rat Model
PURPOSE: Hyperuricemia is an independent risk factor for renal damage and can promote the progression of chronic kidney disease (CKD). In the present study, we employ a rat model to investigate the effects of rosiglitazone (RGTZ), a peroxisome proliferator-activated receptor-gamma agonist, on the de...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292262/ https://www.ncbi.nlm.nih.gov/pubmed/32606592 http://dx.doi.org/10.2147/DDDT.S247091 |
Sumario: | PURPOSE: Hyperuricemia is an independent risk factor for renal damage and can promote the progression of chronic kidney disease (CKD). In the present study, we employ a rat model to investigate the effects of rosiglitazone (RGTZ), a peroxisome proliferator-activated receptor-gamma agonist, on the development of hyperuricemic nephropathy (HN), and we elucidate the mechanisms involved. METHODS: An HN rat model was established by oral administration of a mixture of adenine and potassium oxonate daily for 3 weeks. Twenty-four rats were divided into 4 groups: sham treatment, sham treatment plus RGTZ, HN, and HN treated with RGTZ. RESULTS: Administration of RGTZ effectively preserved renal function, decreased urine microalbumin, and inhibited interstitial fibrosis and macrophage infiltration in a rat HN model. RGTZ treatment also inhibited TGF-β and NF-κB pathway activation, decreased expression of fibronectin, collagen I, α-SMA, vimentin, MCP-1, RANTES, TNF-α, and IL-1β, and increased E-cadherin expression in the kidneys of HN rats. Furthermore, RGTZ treatment preserved expression of OAT1 and OAT3 in the kidney of HN rats. CONCLUSION: RGTZ attenuates the progression of HN through inhibiting TGF-β signaling, suppressing epithelial-to-mesenchymal transition, reducing inflammation, and lowering serum uric acid levels by preserving expression of urate transporters. |
---|