Cargando…
Mid-price prediction based on machine learning methods with technical and quantitative indicators
Stock price prediction is a challenging task, in which machine learning methods have recently been successfully used. In this paper, we extract over 270 hand-crafted features (factors) inspired by technical indicators and quantitative analysis and test their validity on short-term mid-price movement...
Autores principales: | Ntakaris, Adamantios, Kanniainen, Juho, Gabbouj, Moncef, Iosifidis, Alexandros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292367/ https://www.ncbi.nlm.nih.gov/pubmed/32530920 http://dx.doi.org/10.1371/journal.pone.0234107 |
Ejemplares similares
-
Multidimensional particle swarm optimization for machine learning and pattern recognition
por: Kiranyaz, Serkan, et al.
Publicado: (2013) -
Forecasting mid-price movement of Bitcoin futures using machine learning
por: Akyildirim, Erdinc, et al.
Publicado: (2021) -
Predicting Bitcoin Prices Using Machine Learning
por: Dimitriadou, Athanasia, et al.
Publicado: (2023) -
Empirical Analysis for Stock Price Prediction Using NARX Model with Exogenous Technical Indicators
por: Dhafer, Ali H., et al.
Publicado: (2022) -
Dynamics of investor spanning trees around dot-com bubble
por: Ranganathan, Sindhuja, et al.
Publicado: (2018)