Cargando…
Effects of pannus formation on the flow around a bileaflet mechanical heart valve
Some patients with a bileaflet mechanical heart valve (BMHV) show significant increases in the transvalvular pressure drop and abnormal leaflet motion due to a pannus (an abnormal fibrovascular tissue) formed on the ventricular side, even in the absence of physical contact between the pannus and lea...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292405/ https://www.ncbi.nlm.nih.gov/pubmed/32530931 http://dx.doi.org/10.1371/journal.pone.0234341 |
_version_ | 1783546107261878272 |
---|---|
author | Kim, Woojin Choi, Haecheon Kweon, Jihoon Yang, Dong Hyun Kim, Young-Hak |
author_facet | Kim, Woojin Choi, Haecheon Kweon, Jihoon Yang, Dong Hyun Kim, Young-Hak |
author_sort | Kim, Woojin |
collection | PubMed |
description | Some patients with a bileaflet mechanical heart valve (BMHV) show significant increases in the transvalvular pressure drop and abnormal leaflet motion due to a pannus (an abnormal fibrovascular tissue) formed on the ventricular side, even in the absence of physical contact between the pannus and leaflets. We investigate the effects of the pannus shape (circular or semi-circular ring), implantation location and height on the leaflet motion, flow structure and transvalvular pressure drop using numerical simulations. The valve model considered resembles a 25 mm masters HP valve. The mean systolic pressure drop is significantly increased with increasing pannus height, irrespective of its implantation orientation. Near the peak inflow rate, the flow behind the pannus becomes highly turbulent, and the transvalvular pressure drop is markedly increased by the pannus. At the end of valve opening and the start of valve closing, oscillatory motions of the leaflets occur due to periodic shedding of vortex rings behind the pannus, and their amplitudes become large with increasing pannus height. When the pannus shape is asymmetric (e.g., a semi-circular ring) and its height reaches about 0.1D (D (= 25 mm) is the diameter of an aorta), abnormal leaflet motions occur: two leaflets move asymmetrically, and valve closing is delayed in time or incomplete, which increases the regurgitation volume. The peak energy loss coefficients due to panni are obtained from simulation data and compared with those predicted by a one-dimensional model. The comparison indicates that the one-dimensional model is applicable for the BMHV with and without pannus. |
format | Online Article Text |
id | pubmed-7292405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-72924052020-06-18 Effects of pannus formation on the flow around a bileaflet mechanical heart valve Kim, Woojin Choi, Haecheon Kweon, Jihoon Yang, Dong Hyun Kim, Young-Hak PLoS One Research Article Some patients with a bileaflet mechanical heart valve (BMHV) show significant increases in the transvalvular pressure drop and abnormal leaflet motion due to a pannus (an abnormal fibrovascular tissue) formed on the ventricular side, even in the absence of physical contact between the pannus and leaflets. We investigate the effects of the pannus shape (circular or semi-circular ring), implantation location and height on the leaflet motion, flow structure and transvalvular pressure drop using numerical simulations. The valve model considered resembles a 25 mm masters HP valve. The mean systolic pressure drop is significantly increased with increasing pannus height, irrespective of its implantation orientation. Near the peak inflow rate, the flow behind the pannus becomes highly turbulent, and the transvalvular pressure drop is markedly increased by the pannus. At the end of valve opening and the start of valve closing, oscillatory motions of the leaflets occur due to periodic shedding of vortex rings behind the pannus, and their amplitudes become large with increasing pannus height. When the pannus shape is asymmetric (e.g., a semi-circular ring) and its height reaches about 0.1D (D (= 25 mm) is the diameter of an aorta), abnormal leaflet motions occur: two leaflets move asymmetrically, and valve closing is delayed in time or incomplete, which increases the regurgitation volume. The peak energy loss coefficients due to panni are obtained from simulation data and compared with those predicted by a one-dimensional model. The comparison indicates that the one-dimensional model is applicable for the BMHV with and without pannus. Public Library of Science 2020-06-12 /pmc/articles/PMC7292405/ /pubmed/32530931 http://dx.doi.org/10.1371/journal.pone.0234341 Text en © 2020 Kim et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kim, Woojin Choi, Haecheon Kweon, Jihoon Yang, Dong Hyun Kim, Young-Hak Effects of pannus formation on the flow around a bileaflet mechanical heart valve |
title | Effects of pannus formation on the flow around a bileaflet mechanical heart valve |
title_full | Effects of pannus formation on the flow around a bileaflet mechanical heart valve |
title_fullStr | Effects of pannus formation on the flow around a bileaflet mechanical heart valve |
title_full_unstemmed | Effects of pannus formation on the flow around a bileaflet mechanical heart valve |
title_short | Effects of pannus formation on the flow around a bileaflet mechanical heart valve |
title_sort | effects of pannus formation on the flow around a bileaflet mechanical heart valve |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292405/ https://www.ncbi.nlm.nih.gov/pubmed/32530931 http://dx.doi.org/10.1371/journal.pone.0234341 |
work_keys_str_mv | AT kimwoojin effectsofpannusformationontheflowaroundabileafletmechanicalheartvalve AT choihaecheon effectsofpannusformationontheflowaroundabileafletmechanicalheartvalve AT kweonjihoon effectsofpannusformationontheflowaroundabileafletmechanicalheartvalve AT yangdonghyun effectsofpannusformationontheflowaroundabileafletmechanicalheartvalve AT kimyounghak effectsofpannusformationontheflowaroundabileafletmechanicalheartvalve |