Cargando…
Denoise magnitude diffusion magnetic resonance images via variance-stabilizing transformation and optimal singular-value manipulation
Although shown to have a great utility for a wide range of neuroscientific and clinical applications, diffusion-weighted magnetic resonance imaging (dMRI) faces a major challenge of low signal-to-noise ratio (SNR), especially when pushing the spatial resolution for improved delineation of brain’s fi...
Autores principales: | Ma, Xiaodong, Uğurbil, Kâmil, Wu, Xiaoping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292796/ https://www.ncbi.nlm.nih.gov/pubmed/32305566 http://dx.doi.org/10.1016/j.neuroimage.2020.116852 |
Ejemplares similares
-
Image Denoising Using Sparsifying Transform Learning and Weighted Singular Values Minimization
por: Zhao, Yanwei, et al.
Publicado: (2020) -
DENOISING DIFFUSION MRI: CONSIDERATIONS AND IMPLICATIONS FOR ANALYSIS
por: Manzano-Patron, Jose-Pedro, et al.
Publicado: (2023) -
Denoising Diffusion MRI via Graph Total Variance in Spatioangular Domain
por: Wu, Haiyong, et al.
Publicado: (2021) -
Iterative Bayesian denoising based on variance stabilization using Contourlet Transform with Sharp Frequency Localization: application to EFTEM images
por: Sid Ahmed, Soumia, et al.
Publicado: (2019) -
Mitigating transmit‐B(1) artifacts by predicting parallel transmission images with deep learning: A feasibility study using high‐resolution whole‐brain diffusion at 7 Tesla
por: Ma, Xiaodong, et al.
Publicado: (2022)