Cargando…
Bioentity2vec: Attribute- and behavior-driven representation for predicting multi-type relationships between bioentities
BACKGROUND: The explosive growth of genomic, chemical, and pathological data provides new opportunities and challenges for humans to thoroughly understand life activities in cells. However, there exist few computational models that aggregate various bioentities to comprehensively reveal the physical...
Autores principales: | Guo, Zhen-Hao, You, Zhu-Hong, Wang, Yan-Bin, Huang, De-Shuang, Yi, Hai-Cheng, Chen, Zhan-Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293023/ https://www.ncbi.nlm.nih.gov/pubmed/32533701 http://dx.doi.org/10.1093/gigascience/giaa032 |
Ejemplares similares
-
Hierarchical network analysis of co-occurring bioentities in literature
por: Yang, Heejung, et al.
Publicado: (2022) -
Biomolecule and Bioentity Interaction Databases in Systems Biology: A Comprehensive Review
por: Baltoumas, Fotis A., et al.
Publicado: (2021) -
PLAN2L: a web tool for integrated text mining and literature-based bioentity relation extraction
por: Krallinger, Martin, et al.
Publicado: (2009) -
MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm
por: Guo, Zhen-Hao, et al.
Publicado: (2020) -
Generating Mesh Representations of VecGeom Solids
por: Topak, Murat
Publicado: (2019)