Cargando…
Prediction of condition-specific regulatory genes using machine learning
Recent advances in genomic technologies have generated data on large-scale protein–DNA interactions and open chromatin regions for many eukaryotic species. How to identify condition-specific functions of transcription factors using these data has become a major challenge in genomic research. To solv...
Autores principales: | Song, Qi, Lee, Jiyoung, Akter, Shamima, Rogers, Matthew, Grene, Ruth, Li, Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293043/ https://www.ncbi.nlm.nih.gov/pubmed/32329779 http://dx.doi.org/10.1093/nar/gkaa264 |
Ejemplares similares
-
Large-scale modeling of condition-specific gene regulatory networks by information integration and inference
por: Ellwanger, Daniel Christian, et al.
Publicado: (2014) -
Using single cell atlas data to reconstruct regulatory networks
por: Song, Qi, et al.
Publicado: (2023) -
iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization
por: Chen, Zhen, et al.
Publicado: (2021) -
Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets
por: Yoon, Sora, et al.
Publicado: (2019) -
Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks
por: Zhang, Xiujun, et al.
Publicado: (2015)