Cargando…
BREM-SC: a bayesian random effects mixture model for joint clustering single cell multi-omics data
Droplet-based single cell transcriptome sequencing (scRNA-seq) technology, largely represented by the 10× Genomics Chromium system, is able to measure the gene expression from tens of thousands of single cells simultaneously. More recently, coupled with the cutting-edge Cellular Indexing of Transcri...
Autores principales: | Wang, Xinjun, Sun, Zhe, Zhang, Yanfu, Xu, Zhongli, Xin, Hongyi, Huang, Heng, Duerr, Richard H, Chen, Kong, Ding, Ying, Chen, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293045/ https://www.ncbi.nlm.nih.gov/pubmed/32379315 http://dx.doi.org/10.1093/nar/gkaa314 |
Ejemplares similares
-
SECANT: a biology-guided semi-supervised method for clustering, classification, and annotation of single-cell multi-omics
por: Wang, Xinjun, et al.
Publicado: (2022) -
Quark loops in EXPOSTAR and BREM5
por: Burkhardt, H
Publicado: (1988) -
scMoC: single-cell multi-omics clustering
por: Eltager, Mostafa, et al.
Publicado: (2022) -
A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
por: Sun, Zhe, et al.
Publicado: (2019) -
Consensus clustering for Bayesian mixture models
por: Coleman, Stephen, et al.
Publicado: (2022)