Cargando…
High-resolution mapping of injury-site dependent functional recovery in a single axon in zebrafish
In non-mammalian vertebrates, some neurons can regenerate after spinal cord injury. One of these, the giant Mauthner (M-) neuron shows a uniquely direct link to a robust survival-critical escape behavior but appears to regenerate poorly. Here we use two-photon microscopy in parallel with behavioral...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293241/ https://www.ncbi.nlm.nih.gov/pubmed/32533058 http://dx.doi.org/10.1038/s42003-020-1034-x |
Sumario: | In non-mammalian vertebrates, some neurons can regenerate after spinal cord injury. One of these, the giant Mauthner (M-) neuron shows a uniquely direct link to a robust survival-critical escape behavior but appears to regenerate poorly. Here we use two-photon microscopy in parallel with behavioral assays in zebrafish to show that the M-axon can regenerate very rapidly and that the recovery of functionality lags by just days. However, we also find that the site of the injury is critical: While regeneration is poor both close and far from the soma, rapid regeneration and recovery of function occurs for injuries between 10% and 50% of total axon length. Our findings show that rapid regeneration and the recovery of function can be studied at remarkable temporal resolution after targeted injury of one single M-axon and that the decision between poor and rapid regeneration can be studied in this one axon. |
---|