Cargando…

Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability

From established to emergent technologies, doping plays a crucial role in all semiconducting devices. Doping could, theoretically, be an excellent technique for improving repressively low transconductances in n-type organic electrochemical transistors – critical for advancing logic circuits for bioe...

Descripción completa

Detalles Bibliográficos
Autores principales: Paterson, Alexandra F., Savva, Achilleas, Wustoni, Shofarul, Tsetseris, Leonidas, Paulsen, Bryan D., Faber, Hendrik, Emwas, Abdul Hamid, Chen, Xingxing, Nikiforidis, Georgios, Hidalgo, Tania C., Moser, Maximillian, Maria, Iuliana Petruta, Rivnay, Jonathan, McCulloch, Iain, Anthopoulos, Thomas D., Inal, Sahika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293298/
https://www.ncbi.nlm.nih.gov/pubmed/32532975
http://dx.doi.org/10.1038/s41467-020-16648-0
_version_ 1783546273276624896
author Paterson, Alexandra F.
Savva, Achilleas
Wustoni, Shofarul
Tsetseris, Leonidas
Paulsen, Bryan D.
Faber, Hendrik
Emwas, Abdul Hamid
Chen, Xingxing
Nikiforidis, Georgios
Hidalgo, Tania C.
Moser, Maximillian
Maria, Iuliana Petruta
Rivnay, Jonathan
McCulloch, Iain
Anthopoulos, Thomas D.
Inal, Sahika
author_facet Paterson, Alexandra F.
Savva, Achilleas
Wustoni, Shofarul
Tsetseris, Leonidas
Paulsen, Bryan D.
Faber, Hendrik
Emwas, Abdul Hamid
Chen, Xingxing
Nikiforidis, Georgios
Hidalgo, Tania C.
Moser, Maximillian
Maria, Iuliana Petruta
Rivnay, Jonathan
McCulloch, Iain
Anthopoulos, Thomas D.
Inal, Sahika
author_sort Paterson, Alexandra F.
collection PubMed
description From established to emergent technologies, doping plays a crucial role in all semiconducting devices. Doping could, theoretically, be an excellent technique for improving repressively low transconductances in n-type organic electrochemical transistors – critical for advancing logic circuits for bioelectronic and neuromorphic technologies. However, the technical challenge is extreme: n-doped polymers are unstable in electrochemical transistor operating environments, air and water (electrolyte). Here, the first demonstration of doping in electron transporting organic electrochemical transistors is reported. The ammonium salt tetra-n-butylammonium fluoride is simply admixed with the conjugated polymer poly(N,N’-bis(7-glycol)-naphthalene-1,4,5,8-bis(dicarboximide)-co-2,2’-bithiophene-co-N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide), and found to act as a simultaneous molecular dopant and morphology-additive. The combined effects enhance the n-type transconductance with improved channel capacitance and mobility. Furthermore, operational and shelf-life stability measurements showcase the first example of water-stable n-doping in a polymer. Overall, the results set a precedent for doping/additives to impact organic electrochemical transistors as powerfully as they have in other semiconducting devices.
format Online
Article
Text
id pubmed-7293298
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-72932982020-06-16 Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability Paterson, Alexandra F. Savva, Achilleas Wustoni, Shofarul Tsetseris, Leonidas Paulsen, Bryan D. Faber, Hendrik Emwas, Abdul Hamid Chen, Xingxing Nikiforidis, Georgios Hidalgo, Tania C. Moser, Maximillian Maria, Iuliana Petruta Rivnay, Jonathan McCulloch, Iain Anthopoulos, Thomas D. Inal, Sahika Nat Commun Article From established to emergent technologies, doping plays a crucial role in all semiconducting devices. Doping could, theoretically, be an excellent technique for improving repressively low transconductances in n-type organic electrochemical transistors – critical for advancing logic circuits for bioelectronic and neuromorphic technologies. However, the technical challenge is extreme: n-doped polymers are unstable in electrochemical transistor operating environments, air and water (electrolyte). Here, the first demonstration of doping in electron transporting organic electrochemical transistors is reported. The ammonium salt tetra-n-butylammonium fluoride is simply admixed with the conjugated polymer poly(N,N’-bis(7-glycol)-naphthalene-1,4,5,8-bis(dicarboximide)-co-2,2’-bithiophene-co-N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide), and found to act as a simultaneous molecular dopant and morphology-additive. The combined effects enhance the n-type transconductance with improved channel capacitance and mobility. Furthermore, operational and shelf-life stability measurements showcase the first example of water-stable n-doping in a polymer. Overall, the results set a precedent for doping/additives to impact organic electrochemical transistors as powerfully as they have in other semiconducting devices. Nature Publishing Group UK 2020-06-12 /pmc/articles/PMC7293298/ /pubmed/32532975 http://dx.doi.org/10.1038/s41467-020-16648-0 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Paterson, Alexandra F.
Savva, Achilleas
Wustoni, Shofarul
Tsetseris, Leonidas
Paulsen, Bryan D.
Faber, Hendrik
Emwas, Abdul Hamid
Chen, Xingxing
Nikiforidis, Georgios
Hidalgo, Tania C.
Moser, Maximillian
Maria, Iuliana Petruta
Rivnay, Jonathan
McCulloch, Iain
Anthopoulos, Thomas D.
Inal, Sahika
Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability
title Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability
title_full Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability
title_fullStr Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability
title_full_unstemmed Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability
title_short Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability
title_sort water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293298/
https://www.ncbi.nlm.nih.gov/pubmed/32532975
http://dx.doi.org/10.1038/s41467-020-16648-0
work_keys_str_mv AT patersonalexandraf waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT savvaachilleas waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT wustonishofarul waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT tsetserisleonidas waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT paulsenbryand waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT faberhendrik waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT emwasabdulhamid waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT chenxingxing waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT nikiforidisgeorgios waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT hidalgotaniac waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT mosermaximillian waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT mariaiulianapetruta waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT rivnayjonathan waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT mccullochiain waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT anthopoulosthomasd waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability
AT inalsahika waterstablemolecularndopingproducesorganicelectrochemicaltransistorswithhightransconductanceandrecordstability