Cargando…
Using human in vitro transcriptome analysis to build trustworthy machine learning models for prediction of animal drug toxicity
During the development of new drugs or compounds there is a requirement for preclinical trials, commonly involving animal tests, to ascertain the safety of the compound prior to human trials. Machine learning techniques could provide an in-silico alternative to animal models for assessing drug toxic...
Autores principales: | Gardiner, Laura-Jayne, Carrieri, Anna Paola, Wilshaw, Jenny, Checkley, Stephen, Pyzer-Knapp, Edward O., Krishna, Ritesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293302/ https://www.ncbi.nlm.nih.gov/pubmed/32533004 http://dx.doi.org/10.1038/s41598-020-66481-0 |
Ejemplares similares
-
Interpreting machine learning models to investigate circadian regulation and facilitate exploration of clock function
por: Gardiner, Laura-Jayne, et al.
Publicado: (2021) -
Combining explainable machine learning, demographic and multi-omic data to inform precision medicine strategies for inflammatory bowel disease
por: Gardiner, Laura-Jayne, et al.
Publicado: (2022) -
Deep learning for physical scientists: accelerating research with machine learning
por: Pyzer-Knapp, Edward O
Publicado: (2019) -
Machine learning in chemistry
por: Pyzer-Knapp, Edward O, et al.
Publicado: (2019) -
Machine learning exciton dynamics
por: Häse, Florian, et al.
Publicado: (2016)