Cargando…
Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis
Artificial intelligence (AI) systems for computer-aided diagnosis and image-based screening are being adopted worldwide by medical institutions. In such a context, generating fair and unbiased classifiers becomes of paramount importance. The research community of medical image computing is making gr...
Autores principales: | Larrazabal, Agostina J., Nieto, Nicolás, Peterson, Victoria, Milone, Diego H., Ferrante, Enzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293650/ https://www.ncbi.nlm.nih.gov/pubmed/32457147 http://dx.doi.org/10.1073/pnas.1919012117 |
Ejemplares similares
-
On the relationship between research parasites and fairness in machine learning: challenges and opportunities
por: Nieto, Nicolás, et al.
Publicado: (2021) -
Does imbalance in chest X-ray datasets produce biased deep learning approaches for COVID-19 screening?
por: Álvarez-Rodríguez, Lorena, et al.
Publicado: (2022) -
Gender-related data missingness, imbalance and bias in global health surveys
por: Weber, Ann M, et al.
Publicado: (2021) -
Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference
por: Echeveste, Rodrigo, et al.
Publicado: (2022) -
Hypoxia classifier for transcriptome datasets
por: Puente-Santamaría, Laura, et al.
Publicado: (2022)