Cargando…
A Novel Order Analysis and Stacked Sparse Auto-Encoder Feature Learning Method for Milling Tool Wear Condition Monitoring
Milling is a main processing mode of the modern manufacturing industry, which seriously affects the quality and precision of the machined workpiece. However, it is difficult to monitor the tool wear condition in the continuous cutting process, especially under a variable speed condition. The existin...
Autores principales: | Ou, Jiayu, Li, Hongkun, Huang, Gangjin, Zhou, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294416/ https://www.ncbi.nlm.nih.gov/pubmed/32438608 http://dx.doi.org/10.3390/s20102878 |
Ejemplares similares
-
Stacked Sparse Auto-Encoders (SSAE) Based Electronic Nose for Chinese Liquors Classification
por: Zhao, Wei, et al.
Publicado: (2017) -
Improving Prediction of Self-interacting Proteins Using Stacked Sparse Auto-Encoder with PSSM profiles
por: Wang, Yan-Bin, et al.
Publicado: (2018) -
Variety Identification of Orchids Using Fourier Transform Infrared Spectroscopy Combined with Stacked Sparse Auto-Encoder
por: Chen, Yunfeng, et al.
Publicado: (2019) -
A Reliable Prognosis Approach for Degradation Evaluation of Rolling Bearing Using MCLSTM
por: Huang, Gangjin, et al.
Publicado: (2020) -
Automatic classification of nerve discharge rhythms based on sparse auto-encoder and time series feature
por: Jiang, Zhongting, et al.
Publicado: (2022)