Cargando…
Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review
Data-driven methods in structural health monitoring (SHM) is gaining popularity due to recent technological advancements in sensors, as well as high-speed internet and cloud-based computation. Since the introduction of deep learning (DL) in civil engineering, particularly in SHM, this emerging and p...
Autores principales: | Azimi, Mohsen, Eslamlou, Armin Dadras, Pekcan, Gokhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294417/ https://www.ncbi.nlm.nih.gov/pubmed/32414205 http://dx.doi.org/10.3390/s20102778 |
Ejemplares similares
-
Crop Agnostic Monitoring Driven by Deep Learning
por: Halstead, Michael, et al.
Publicado: (2021) -
Damage Detection of Unwashed Eggs through Video and Deep Learning
por: Huang, Yuan, et al.
Publicado: (2023) -
Comparing State-of-the-Art Deep Learning Algorithms for the Automated Detection and Tracking of Black Cattle
por: Myat Noe, Su, et al.
Publicado: (2023) -
State-of-the-Art Deep Learning Methods for Objects Detection in Remote Sensing Satellite Images
por: Adegun, Adekanmi Adeyinka, et al.
Publicado: (2023) -
Deep learning and the electrocardiogram: review of the current state-of-the-art
por: Somani, Sulaiman, et al.
Publicado: (2021)