Cargando…

SemImput: Bridging Semantic Imputation with Deep Learning for Complex Human Activity Recognition

The recognition of activities of daily living (ADL) in smart environments is a well-known and an important research area, which presents the real-time state of humans in pervasive computing. The process of recognizing human activities generally involves deploying a set of obtrusive and unobtrusive s...

Descripción completa

Detalles Bibliográficos
Autores principales: Razzaq, Muhammad Asif, Cleland, Ian, Nugent, Chris, Lee, Sungyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294435/
https://www.ncbi.nlm.nih.gov/pubmed/32414064
http://dx.doi.org/10.3390/s20102771
Descripción
Sumario:The recognition of activities of daily living (ADL) in smart environments is a well-known and an important research area, which presents the real-time state of humans in pervasive computing. The process of recognizing human activities generally involves deploying a set of obtrusive and unobtrusive sensors, pre-processing the raw data, and building classification models using machine learning (ML) algorithms. Integrating data from multiple sensors is a challenging task due to dynamic nature of data sources. This is further complicated due to semantic and syntactic differences in these data sources. These differences become even more complex if the data generated is imperfect, which ultimately has a direct impact on its usefulness in yielding an accurate classifier. In this study, we propose a semantic imputation framework to improve the quality of sensor data using ontology-based semantic similarity learning. This is achieved by identifying semantic correlations among sensor events through SPARQL queries, and by performing a time-series longitudinal imputation. Furthermore, we applied deep learning (DL) based artificial neural network (ANN) on public datasets to demonstrate the applicability and validity of the proposed approach. The results showed a higher accuracy with semantically imputed datasets using ANN. We also presented a detailed comparative analysis, comparing the results with the state-of-the-art from the literature. We found that our semantic imputed datasets improved the classification accuracy with 95.78% as a higher one thus proving the effectiveness and robustness of learned models.