Cargando…
SemImput: Bridging Semantic Imputation with Deep Learning for Complex Human Activity Recognition
The recognition of activities of daily living (ADL) in smart environments is a well-known and an important research area, which presents the real-time state of humans in pervasive computing. The process of recognizing human activities generally involves deploying a set of obtrusive and unobtrusive s...
Autores principales: | Razzaq, Muhammad Asif, Cleland, Ian, Nugent, Chris, Lee, Sungyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294435/ https://www.ncbi.nlm.nih.gov/pubmed/32414064 http://dx.doi.org/10.3390/s20102771 |
Ejemplares similares
-
Evaluation methodology for deep learning imputation models
por: Boursalie, Omar, et al.
Publicado: (2022) -
Deep Learning Methods for Omics Data Imputation
por: Huang, Lei, et al.
Publicado: (2023) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
Molgenis-impute: imputation pipeline in a box
por: Kanterakis, Alexandros, et al.
Publicado: (2015) -
An autoencoder-based deep learning method for genotype imputation
por: Song, Meng, et al.
Publicado: (2022)