Cargando…

A novel cohort analysis approach to determining the case fatality rate of COVID-19 and other infectious diseases

As the Coronavirus contagion develops, it is increasingly important to understand the dynamics of the disease. Its severity is best described by two parameters: its ability to spread and its lethality. Here, we combine a mathematical model with a cohort analysis approach to determine the range of ca...

Descripción completa

Detalles Bibliográficos
Autor principal: Narayanan, Charit Samyak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295185/
https://www.ncbi.nlm.nih.gov/pubmed/32542041
http://dx.doi.org/10.1371/journal.pone.0233146
_version_ 1783546603726962688
author Narayanan, Charit Samyak
author_facet Narayanan, Charit Samyak
author_sort Narayanan, Charit Samyak
collection PubMed
description As the Coronavirus contagion develops, it is increasingly important to understand the dynamics of the disease. Its severity is best described by two parameters: its ability to spread and its lethality. Here, we combine a mathematical model with a cohort analysis approach to determine the range of case fatality rates (CFR). We use a logistical function to describe the exponential growth and subsequent flattening of COVID-19 CFR that depends on three parameters: the final CFR (L), the CFR growth rate (k), and the onset-to-death interval (t(0)). Using the logistic model with specific parameters (L, k and t(0)), we calculate the number of deaths each day for each cohort. We build an objective function that minimizes the root mean square error between the actual and predicted values of cumulative deaths and run multiple simulations by altering the three parameters. Using all of these values, we find out which set of parameters returns the lowest error when compared to the number of actual deaths. We were able to predict the CFR much closer to reality at all stages of the viral outbreak compared to traditional methods. This model can be used far more effectively than current models to estimate the CFR during an outbreak, allowing for better planning. The model can also help us better understand the impact of individual interventions on the CFR. With much better data collection and labeling, we should be able to improve our predictive power even further.
format Online
Article
Text
id pubmed-7295185
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-72951852020-06-19 A novel cohort analysis approach to determining the case fatality rate of COVID-19 and other infectious diseases Narayanan, Charit Samyak PLoS One Research Article As the Coronavirus contagion develops, it is increasingly important to understand the dynamics of the disease. Its severity is best described by two parameters: its ability to spread and its lethality. Here, we combine a mathematical model with a cohort analysis approach to determine the range of case fatality rates (CFR). We use a logistical function to describe the exponential growth and subsequent flattening of COVID-19 CFR that depends on three parameters: the final CFR (L), the CFR growth rate (k), and the onset-to-death interval (t(0)). Using the logistic model with specific parameters (L, k and t(0)), we calculate the number of deaths each day for each cohort. We build an objective function that minimizes the root mean square error between the actual and predicted values of cumulative deaths and run multiple simulations by altering the three parameters. Using all of these values, we find out which set of parameters returns the lowest error when compared to the number of actual deaths. We were able to predict the CFR much closer to reality at all stages of the viral outbreak compared to traditional methods. This model can be used far more effectively than current models to estimate the CFR during an outbreak, allowing for better planning. The model can also help us better understand the impact of individual interventions on the CFR. With much better data collection and labeling, we should be able to improve our predictive power even further. Public Library of Science 2020-06-15 /pmc/articles/PMC7295185/ /pubmed/32542041 http://dx.doi.org/10.1371/journal.pone.0233146 Text en © 2020 Charit Samyak Narayanan http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Narayanan, Charit Samyak
A novel cohort analysis approach to determining the case fatality rate of COVID-19 and other infectious diseases
title A novel cohort analysis approach to determining the case fatality rate of COVID-19 and other infectious diseases
title_full A novel cohort analysis approach to determining the case fatality rate of COVID-19 and other infectious diseases
title_fullStr A novel cohort analysis approach to determining the case fatality rate of COVID-19 and other infectious diseases
title_full_unstemmed A novel cohort analysis approach to determining the case fatality rate of COVID-19 and other infectious diseases
title_short A novel cohort analysis approach to determining the case fatality rate of COVID-19 and other infectious diseases
title_sort novel cohort analysis approach to determining the case fatality rate of covid-19 and other infectious diseases
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295185/
https://www.ncbi.nlm.nih.gov/pubmed/32542041
http://dx.doi.org/10.1371/journal.pone.0233146
work_keys_str_mv AT narayanancharitsamyak anovelcohortanalysisapproachtodeterminingthecasefatalityrateofcovid19andotherinfectiousdiseases
AT narayanancharitsamyak novelcohortanalysisapproachtodeterminingthecasefatalityrateofcovid19andotherinfectiousdiseases