Cargando…
MicroRNA-466c-3p exerts protective effect on neuronal apoptosis and improves functional recovery post spinal cord injury via mitochondrial apoptotic pathway
Spinal cord injury (SCI) is involved with abnormal expression of miRNAs (miRs) which are responsible for some II(ry) injury responses which include apoptosis, inflammation and oxidative stress. Mechanisms involving miRs induced apoptosis still needs to be investigated. In the present work we develop...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295889/ https://www.ncbi.nlm.nih.gov/pubmed/32542430 http://dx.doi.org/10.1186/s13568-020-01033-3 |
_version_ | 1783546732285526016 |
---|---|
author | An, Yan Li, Jianing Yuan, Qiang Fan, Mingxing |
author_facet | An, Yan Li, Jianing Yuan, Qiang Fan, Mingxing |
author_sort | An, Yan |
collection | PubMed |
description | Spinal cord injury (SCI) is involved with abnormal expression of miRNAs (miRs) which are responsible for some II(ry) injury responses which include apoptosis, inflammation and oxidative stress. Mechanisms involving miRs induced apoptosis still needs to be investigated. In the present work we developed a rat model of SCI, followed by microarray analysis for expression of miRs at various time points after SCI. The locomotor activity was assessed by Basso, Beattie and Bresnahan score, lesion volume was analyzed by cresyl violet staining and TUNEL staining for extent of apoptosis at various time points of post SCI. Numbers of miRs were altered after 2 weeks of SCI among which miR-466c-3p was the most significantly down-regulated. Transfection with miR-466c-3p mimics caused overexpression of miR-466c-3p, also improvement in functional recovery, decrease in apoptosis of neuronal cells and lesion size was observed in SCI rats. The Luciferase assay suggested that miR-466c-3p suppressed the expression of Bcl-2 (apoptosis regulator). It was also evidenced that upon restoring the levels of Bcl-2 with the help of pc-DNA3-Bcl-2 halted the attenuating action of miR-466c-3p in hydrogen peroxide exposed N9 microglia cells. The findings suggested that miR-466c-3p may inhibit mitochondrial apoptotic pathway via blocking Bcl-2 and cleaved capase-9/-3in rats after SCI. Altogether, the results suggested that miR-466c-3p may exert attenuating effect on functional recovery and inhibit the apoptosis of neuronal cells via halting the mitochondrial apoptosis cascade in SCI rats indicating that miR-466c-3p can be attractive therapeutic candidate in treating SCI. |
format | Online Article Text |
id | pubmed-7295889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-72958892020-06-22 MicroRNA-466c-3p exerts protective effect on neuronal apoptosis and improves functional recovery post spinal cord injury via mitochondrial apoptotic pathway An, Yan Li, Jianing Yuan, Qiang Fan, Mingxing AMB Express Original Article Spinal cord injury (SCI) is involved with abnormal expression of miRNAs (miRs) which are responsible for some II(ry) injury responses which include apoptosis, inflammation and oxidative stress. Mechanisms involving miRs induced apoptosis still needs to be investigated. In the present work we developed a rat model of SCI, followed by microarray analysis for expression of miRs at various time points after SCI. The locomotor activity was assessed by Basso, Beattie and Bresnahan score, lesion volume was analyzed by cresyl violet staining and TUNEL staining for extent of apoptosis at various time points of post SCI. Numbers of miRs were altered after 2 weeks of SCI among which miR-466c-3p was the most significantly down-regulated. Transfection with miR-466c-3p mimics caused overexpression of miR-466c-3p, also improvement in functional recovery, decrease in apoptosis of neuronal cells and lesion size was observed in SCI rats. The Luciferase assay suggested that miR-466c-3p suppressed the expression of Bcl-2 (apoptosis regulator). It was also evidenced that upon restoring the levels of Bcl-2 with the help of pc-DNA3-Bcl-2 halted the attenuating action of miR-466c-3p in hydrogen peroxide exposed N9 microglia cells. The findings suggested that miR-466c-3p may inhibit mitochondrial apoptotic pathway via blocking Bcl-2 and cleaved capase-9/-3in rats after SCI. Altogether, the results suggested that miR-466c-3p may exert attenuating effect on functional recovery and inhibit the apoptosis of neuronal cells via halting the mitochondrial apoptosis cascade in SCI rats indicating that miR-466c-3p can be attractive therapeutic candidate in treating SCI. Springer Berlin Heidelberg 2020-06-15 /pmc/articles/PMC7295889/ /pubmed/32542430 http://dx.doi.org/10.1186/s13568-020-01033-3 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Original Article An, Yan Li, Jianing Yuan, Qiang Fan, Mingxing MicroRNA-466c-3p exerts protective effect on neuronal apoptosis and improves functional recovery post spinal cord injury via mitochondrial apoptotic pathway |
title | MicroRNA-466c-3p exerts protective effect on neuronal apoptosis and improves functional recovery post spinal cord injury via mitochondrial apoptotic pathway |
title_full | MicroRNA-466c-3p exerts protective effect on neuronal apoptosis and improves functional recovery post spinal cord injury via mitochondrial apoptotic pathway |
title_fullStr | MicroRNA-466c-3p exerts protective effect on neuronal apoptosis and improves functional recovery post spinal cord injury via mitochondrial apoptotic pathway |
title_full_unstemmed | MicroRNA-466c-3p exerts protective effect on neuronal apoptosis and improves functional recovery post spinal cord injury via mitochondrial apoptotic pathway |
title_short | MicroRNA-466c-3p exerts protective effect on neuronal apoptosis and improves functional recovery post spinal cord injury via mitochondrial apoptotic pathway |
title_sort | microrna-466c-3p exerts protective effect on neuronal apoptosis and improves functional recovery post spinal cord injury via mitochondrial apoptotic pathway |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295889/ https://www.ncbi.nlm.nih.gov/pubmed/32542430 http://dx.doi.org/10.1186/s13568-020-01033-3 |
work_keys_str_mv | AT anyan microrna466c3pexertsprotectiveeffectonneuronalapoptosisandimprovesfunctionalrecoverypostspinalcordinjuryviamitochondrialapoptoticpathway AT lijianing microrna466c3pexertsprotectiveeffectonneuronalapoptosisandimprovesfunctionalrecoverypostspinalcordinjuryviamitochondrialapoptoticpathway AT yuanqiang microrna466c3pexertsprotectiveeffectonneuronalapoptosisandimprovesfunctionalrecoverypostspinalcordinjuryviamitochondrialapoptoticpathway AT fanmingxing microrna466c3pexertsprotectiveeffectonneuronalapoptosisandimprovesfunctionalrecoverypostspinalcordinjuryviamitochondrialapoptoticpathway |