Cargando…
Independent Low-Rank Matrix Analysis-Based Automatic Artifact Reduction Technique Applied to Three BCI Paradigms
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) can potentially enable people to non-invasively and directly communicate with others using brain activities. Artifacts generated from body activities (e.g., eyeblinks and teeth clenches) often contaminate EEGs and make EEG-based class...
Autores principales: | Kanoga, Suguru, Hoshino, Takayuki, Asoh, Hideki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296171/ https://www.ncbi.nlm.nih.gov/pubmed/32581739 http://dx.doi.org/10.3389/fnhum.2020.00173 |
Ejemplares similares
-
EEG hybrid brain-computer interfaces: A scoping review applying an existing hybrid-BCI taxonomy and considerations for pediatric applications
por: Mussi, Matheus G., et al.
Publicado: (2022) -
Information Bottleneck as Optimisation Method for SSVEP-Based BCI
por: Ingel, Anti, et al.
Publicado: (2021) -
BCI-FES With Multimodal Feedback for Motor Recovery Poststroke
por: Remsik, Alexander B., et al.
Publicado: (2022) -
Methods for motion artifact reduction in online brain-computer interface experiments: a systematic review
por: Schmoigl-Tonis, Mathias, et al.
Publicado: (2023) -
An online hybrid BCI combining SSVEP and EOG-based eye movements
por: Zhang, Jun, et al.
Publicado: (2023)