Cargando…

Revisiting the use of graph centrality models in biological pathway analysis

The use of graph theory models is widespread in biological pathway analyses as it is often desired to evaluate the position of genes and proteins in their interaction networks of the biological systems. In this article, we argue that the common standard graph centrality measures do not sufficiently...

Descripción completa

Detalles Bibliográficos
Autores principales: Naderi Yeganeh, Pourya, Richardson, Chrsitine, Saule, Erik, Loraine, Ann, Taghi Mostafavi, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296696/
https://www.ncbi.nlm.nih.gov/pubmed/32549913
http://dx.doi.org/10.1186/s13040-020-00214-x
Descripción
Sumario:The use of graph theory models is widespread in biological pathway analyses as it is often desired to evaluate the position of genes and proteins in their interaction networks of the biological systems. In this article, we argue that the common standard graph centrality measures do not sufficiently capture the informative topological organizations of the pathways, and thus, limit the biological inference. While key pathway elements may appear both upstream and downstream in pathways, standard directed graph centralities attribute significant topological importance to the upstream elements and evaluate the downstream elements as having no importance.We present a directed graph framework, Source/Sink Centrality (SSC), to address the limitations of standard models. SSC separately measures the importance of a node in the upstream and the downstream of a pathway, as a sender and a receiver of biological signals, and combines the two terms for evaluating the centrality. To validate SSC, we evaluate the topological position of known human cancer genes and mouse lethal genes in their respective KEGG annotated pathways and show that SSC-derived centralities provide an effective framework for associating higher positional importance to the genes with higher importance from a priori knowledge. While the presented work challenges some of the modeling assumptions in the common pathway analyses, it provides a straight-forward methodology to extend the existing models. The SSC extensions can result in more informative topological description of pathways, and thus, more informative biological inference.