Cargando…
Laplace approximation, penalized quasi-likelihood, and adaptive Gauss–Hermite quadrature for generalized linear mixed models: towards meta-analysis of binary outcome with sparse data
BACKGROUND: In meta-analyses of a binary outcome, double zero events in some studies cause a critical methodology problem. The generalized linear mixed model (GLMM) has been proposed as a valid statistical tool for pooling such data. Three parameter estimation methods, including the Laplace approxim...
Autores principales: | Ju, Ke, Lin, Lifeng, Chu, Haitao, Cheng, Liang-Liang, Xu, Chang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296731/ https://www.ncbi.nlm.nih.gov/pubmed/32539721 http://dx.doi.org/10.1186/s12874-020-01035-6 |
Ejemplares similares
-
Multiple Linear Regressions by Maximizing the Likelihood under Assumption of Generalized Gauss-Laplace Distribution of the Error
por: Jäntschi, Lorentz, et al.
Publicado: (2016) -
A Weighted Measurement Fusion Particle Filter for Nonlinear Multisensory Systems Based on Gauss–Hermite Approximation
por: Li, Yun, et al.
Publicado: (2017) -
Increasing reliability of Gauss-Kronrod quadrature by Eratosthenes' Sieve method
por: Adam, G, et al.
Publicado: (2000) -
Generalized Linear Mixed Models for Binary Data: Are Matching Results from Penalized Quasi-Likelihood and Numerical Integration Less Biased?
por: Benedetti, Andrea, et al.
Publicado: (2014) -
A Characterization of the Compound Multiparameter Hermite Gamma Distribution via Gauss's Principle
por: Hürlimann, Werner
Publicado: (2013)