Cargando…
RNA-GPS predicts high-resolution RNA subcellular localization and highlights the role of splicing
Subcellular localization is essential to RNA biogenesis, processing, and function across the gene expression life cycle. However, the specific nucleotide sequence motifs that direct RNA localization are incompletely understood. Fortunately, new sequencing technologies have provided transcriptome-wid...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297119/ https://www.ncbi.nlm.nih.gov/pubmed/32220894 http://dx.doi.org/10.1261/rna.074161.119 |
_version_ | 1783546946607120384 |
---|---|
author | Wu, Kevin E. Parker, Kevin R. Fazal, Furqan M. Chang, Howard Y. Zou, James |
author_facet | Wu, Kevin E. Parker, Kevin R. Fazal, Furqan M. Chang, Howard Y. Zou, James |
author_sort | Wu, Kevin E. |
collection | PubMed |
description | Subcellular localization is essential to RNA biogenesis, processing, and function across the gene expression life cycle. However, the specific nucleotide sequence motifs that direct RNA localization are incompletely understood. Fortunately, new sequencing technologies have provided transcriptome-wide atlases of RNA localization, creating an opportunity to leverage computational modeling. Here we present RNA-GPS, a new machine learning model that uses nucleotide-level features to predict RNA localization across eight different subcellular locations—the first to provide such a wide range of predictions. RNA-GPS's design enables high-throughput sequence ablation and feature importance analyses to probe the sequence motifs that drive localization prediction. We find localization informative motifs to be concentrated on 3′-UTRs and scattered along the coding sequence, and motifs related to splicing to be important drivers of predicted localization, even for cytotopic distinctions for membraneless bodies within the nucleus or for organelles within the cytoplasm. Overall, our results suggest transcript splicing is one of many elements influencing RNA subcellular localization. |
format | Online Article Text |
id | pubmed-7297119 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-72971192021-07-01 RNA-GPS predicts high-resolution RNA subcellular localization and highlights the role of splicing Wu, Kevin E. Parker, Kevin R. Fazal, Furqan M. Chang, Howard Y. Zou, James RNA Article Subcellular localization is essential to RNA biogenesis, processing, and function across the gene expression life cycle. However, the specific nucleotide sequence motifs that direct RNA localization are incompletely understood. Fortunately, new sequencing technologies have provided transcriptome-wide atlases of RNA localization, creating an opportunity to leverage computational modeling. Here we present RNA-GPS, a new machine learning model that uses nucleotide-level features to predict RNA localization across eight different subcellular locations—the first to provide such a wide range of predictions. RNA-GPS's design enables high-throughput sequence ablation and feature importance analyses to probe the sequence motifs that drive localization prediction. We find localization informative motifs to be concentrated on 3′-UTRs and scattered along the coding sequence, and motifs related to splicing to be important drivers of predicted localization, even for cytotopic distinctions for membraneless bodies within the nucleus or for organelles within the cytoplasm. Overall, our results suggest transcript splicing is one of many elements influencing RNA subcellular localization. Cold Spring Harbor Laboratory Press 2020-07 /pmc/articles/PMC7297119/ /pubmed/32220894 http://dx.doi.org/10.1261/rna.074161.119 Text en © 2020 Wu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by the RNA Society for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Article Wu, Kevin E. Parker, Kevin R. Fazal, Furqan M. Chang, Howard Y. Zou, James RNA-GPS predicts high-resolution RNA subcellular localization and highlights the role of splicing |
title | RNA-GPS predicts high-resolution RNA subcellular localization and highlights the role of splicing |
title_full | RNA-GPS predicts high-resolution RNA subcellular localization and highlights the role of splicing |
title_fullStr | RNA-GPS predicts high-resolution RNA subcellular localization and highlights the role of splicing |
title_full_unstemmed | RNA-GPS predicts high-resolution RNA subcellular localization and highlights the role of splicing |
title_short | RNA-GPS predicts high-resolution RNA subcellular localization and highlights the role of splicing |
title_sort | rna-gps predicts high-resolution rna subcellular localization and highlights the role of splicing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297119/ https://www.ncbi.nlm.nih.gov/pubmed/32220894 http://dx.doi.org/10.1261/rna.074161.119 |
work_keys_str_mv | AT wukevine rnagpspredictshighresolutionrnasubcellularlocalizationandhighlightstheroleofsplicing AT parkerkevinr rnagpspredictshighresolutionrnasubcellularlocalizationandhighlightstheroleofsplicing AT fazalfurqanm rnagpspredictshighresolutionrnasubcellularlocalizationandhighlightstheroleofsplicing AT changhowardy rnagpspredictshighresolutionrnasubcellularlocalizationandhighlightstheroleofsplicing AT zoujames rnagpspredictshighresolutionrnasubcellularlocalizationandhighlightstheroleofsplicing |