Cargando…
Subtype-specific characterization of breast cancer invasion using a microfluidic tumor platform
Understanding progression of breast cancers to invasive ductal carcinoma (IDC) can significantly improve breast cancer treatments. However, it is still difficult to identify genetic signatures and the role of tumor microenvironment to distinguish pathological stages of pre-invasive lesion and IDC. P...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297326/ https://www.ncbi.nlm.nih.gov/pubmed/32544183 http://dx.doi.org/10.1371/journal.pone.0234012 |
_version_ | 1783546980366024704 |
---|---|
author | Moon, Hye-ran Ospina-Muñoz, Natalia Noe-Kim, Victoria Yang, Yi Elzey, Bennett D. Konieczny, Stephen F. Han, Bumsoo |
author_facet | Moon, Hye-ran Ospina-Muñoz, Natalia Noe-Kim, Victoria Yang, Yi Elzey, Bennett D. Konieczny, Stephen F. Han, Bumsoo |
author_sort | Moon, Hye-ran |
collection | PubMed |
description | Understanding progression of breast cancers to invasive ductal carcinoma (IDC) can significantly improve breast cancer treatments. However, it is still difficult to identify genetic signatures and the role of tumor microenvironment to distinguish pathological stages of pre-invasive lesion and IDC. Presence of multiple subtypes of breast cancers makes the assessment more challenging. In this study, an in-vitro microfluidic assay was developed to quantitatively assess the subtype-specific invasion potential of breast cancers. The developed assay is a microfluidic platform in which a ductal structure of epithelial cancer cells is surrounded with a three-dimensional (3D) collagen matrix. In the developed platform, two triple negative cancer subtypes (MDA-MB-231 and SUM-159PT) invaded into the surrounding matrix but the luminal A subtype, MCF-7, did not. Among invasive subtypes, SUM-159PT cells showed significantly higher invasion and degradation of the surrounding matrix than MDA-MB-231. Interestingly, the cells cultured on the platform expressed higher levels of CD24 than in their conventional 2D cultures. This microfluidic platform may be a useful tool to characterize and predict invasive potential of breast cancer subtypes or patient-derived cells. |
format | Online Article Text |
id | pubmed-7297326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-72973262020-06-19 Subtype-specific characterization of breast cancer invasion using a microfluidic tumor platform Moon, Hye-ran Ospina-Muñoz, Natalia Noe-Kim, Victoria Yang, Yi Elzey, Bennett D. Konieczny, Stephen F. Han, Bumsoo PLoS One Research Article Understanding progression of breast cancers to invasive ductal carcinoma (IDC) can significantly improve breast cancer treatments. However, it is still difficult to identify genetic signatures and the role of tumor microenvironment to distinguish pathological stages of pre-invasive lesion and IDC. Presence of multiple subtypes of breast cancers makes the assessment more challenging. In this study, an in-vitro microfluidic assay was developed to quantitatively assess the subtype-specific invasion potential of breast cancers. The developed assay is a microfluidic platform in which a ductal structure of epithelial cancer cells is surrounded with a three-dimensional (3D) collagen matrix. In the developed platform, two triple negative cancer subtypes (MDA-MB-231 and SUM-159PT) invaded into the surrounding matrix but the luminal A subtype, MCF-7, did not. Among invasive subtypes, SUM-159PT cells showed significantly higher invasion and degradation of the surrounding matrix than MDA-MB-231. Interestingly, the cells cultured on the platform expressed higher levels of CD24 than in their conventional 2D cultures. This microfluidic platform may be a useful tool to characterize and predict invasive potential of breast cancer subtypes or patient-derived cells. Public Library of Science 2020-06-16 /pmc/articles/PMC7297326/ /pubmed/32544183 http://dx.doi.org/10.1371/journal.pone.0234012 Text en © 2020 Moon et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Moon, Hye-ran Ospina-Muñoz, Natalia Noe-Kim, Victoria Yang, Yi Elzey, Bennett D. Konieczny, Stephen F. Han, Bumsoo Subtype-specific characterization of breast cancer invasion using a microfluidic tumor platform |
title | Subtype-specific characterization of breast cancer invasion using a microfluidic tumor platform |
title_full | Subtype-specific characterization of breast cancer invasion using a microfluidic tumor platform |
title_fullStr | Subtype-specific characterization of breast cancer invasion using a microfluidic tumor platform |
title_full_unstemmed | Subtype-specific characterization of breast cancer invasion using a microfluidic tumor platform |
title_short | Subtype-specific characterization of breast cancer invasion using a microfluidic tumor platform |
title_sort | subtype-specific characterization of breast cancer invasion using a microfluidic tumor platform |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297326/ https://www.ncbi.nlm.nih.gov/pubmed/32544183 http://dx.doi.org/10.1371/journal.pone.0234012 |
work_keys_str_mv | AT moonhyeran subtypespecificcharacterizationofbreastcancerinvasionusingamicrofluidictumorplatform AT ospinamunoznatalia subtypespecificcharacterizationofbreastcancerinvasionusingamicrofluidictumorplatform AT noekimvictoria subtypespecificcharacterizationofbreastcancerinvasionusingamicrofluidictumorplatform AT yangyi subtypespecificcharacterizationofbreastcancerinvasionusingamicrofluidictumorplatform AT elzeybennettd subtypespecificcharacterizationofbreastcancerinvasionusingamicrofluidictumorplatform AT koniecznystephenf subtypespecificcharacterizationofbreastcancerinvasionusingamicrofluidictumorplatform AT hanbumsoo subtypespecificcharacterizationofbreastcancerinvasionusingamicrofluidictumorplatform |