Cargando…

Physically sound, self-learning digital twins for sloshing fluids

In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in simulation-assisted decision making. The proposed method infers the (linear or non...

Descripción completa

Detalles Bibliográficos
Autores principales: Moya, Beatriz, Alfaro, Iciar, Gonzalez, David, Chinesta, Francisco, Cueto, Elías
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297333/
https://www.ncbi.nlm.nih.gov/pubmed/32544175
http://dx.doi.org/10.1371/journal.pone.0234569
Descripción
Sumario:In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in simulation-assisted decision making. The proposed method infers the (linear or non-linear) constitutive behavior of the fluid from video sequences of the sloshing phenomena. Real-time prediction of the fluid response is obtained from a reduced order model (ROM) constructed by means of thermodynamics-informed data-driven learning. From these data, we aim to predict the future response of a twin fluid reacting to the movement of the real container. The constructed system is able to perform accurate forecasts of its future reactions to the movements of the containers. The system is completed with augmented reality techniques, so as to enable comparisons among the predicted result with the actual response of the same liquid and to provide the user with insightful information about the physics taking place.