Cargando…
Physically sound, self-learning digital twins for sloshing fluids
In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in simulation-assisted decision making. The proposed method infers the (linear or non...
Autores principales: | Moya, Beatriz, Alfaro, Iciar, Gonzalez, David, Chinesta, Francisco, Cueto, Elías |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297333/ https://www.ncbi.nlm.nih.gov/pubmed/32544175 http://dx.doi.org/10.1371/journal.pone.0234569 |
Ejemplares similares
-
Data-Driven GENERIC Modeling of Poroviscoelastic Materials
por: Ghnatios, Chady, et al.
Publicado: (2019) -
A variational principle for fluid sloshing with vorticity, dynamically coupled to vessel motion
por: Ardakani, H. Alemi, et al.
Publicado: (2019) -
Liquid sloshing dynamics: theory and applications
por: Ibrahim, Raouf A
Publicado: (2005) -
A Data-Driven Learning Method for Constitutive Modeling: Application to Vascular Hyperelastic Soft Tissues
por: González, David, et al.
Publicado: (2020) -
Proper generalized decompositions: an introduction to computer implementation with Matlab
por: Cueto, Elías, et al.
Publicado: (2016)