Cargando…
Pyphe, a python toolbox for assessing microbial growth and cell viability in high-throughput colony screens
Microbial fitness screens are a key technique in functional genomics. We present an all-in-one solution, pyphe, for automating and improving data analysis pipelines associated with large-scale fitness screens, including image acquisition and quantification, data normalisation, and statistical analys...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297533/ https://www.ncbi.nlm.nih.gov/pubmed/32543370 http://dx.doi.org/10.7554/eLife.55160 |
_version_ | 1783547026302042112 |
---|---|
author | Kamrad, Stephan Rodríguez-López, María Cotobal, Cristina Correia-Melo, Clara Ralser, Markus Bähler, Jürg |
author_facet | Kamrad, Stephan Rodríguez-López, María Cotobal, Cristina Correia-Melo, Clara Ralser, Markus Bähler, Jürg |
author_sort | Kamrad, Stephan |
collection | PubMed |
description | Microbial fitness screens are a key technique in functional genomics. We present an all-in-one solution, pyphe, for automating and improving data analysis pipelines associated with large-scale fitness screens, including image acquisition and quantification, data normalisation, and statistical analysis. Pyphe is versatile and processes fitness data from colony sizes, viability scores from phloxine B staining or colony growth curves, all obtained with inexpensive transilluminating flatbed scanners. We apply pyphe to show that the fitness information contained in late endpoint measurements of colony sizes is similar to maximum growth slopes from time series. We phenotype gene-deletion strains of fission yeast in 59,350 individual fitness assays in 70 conditions, revealing that colony size and viability provide complementary, independent information. Viability scores obtained from quantifying the redness of phloxine-stained colonies accurately reflect the fraction of live cells within colonies. Pyphe is user-friendly, open-source and fully documented, illustrated by applications to diverse fitness analysis scenarios. |
format | Online Article Text |
id | pubmed-7297533 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-72975332020-06-18 Pyphe, a python toolbox for assessing microbial growth and cell viability in high-throughput colony screens Kamrad, Stephan Rodríguez-López, María Cotobal, Cristina Correia-Melo, Clara Ralser, Markus Bähler, Jürg eLife Genetics and Genomics Microbial fitness screens are a key technique in functional genomics. We present an all-in-one solution, pyphe, for automating and improving data analysis pipelines associated with large-scale fitness screens, including image acquisition and quantification, data normalisation, and statistical analysis. Pyphe is versatile and processes fitness data from colony sizes, viability scores from phloxine B staining or colony growth curves, all obtained with inexpensive transilluminating flatbed scanners. We apply pyphe to show that the fitness information contained in late endpoint measurements of colony sizes is similar to maximum growth slopes from time series. We phenotype gene-deletion strains of fission yeast in 59,350 individual fitness assays in 70 conditions, revealing that colony size and viability provide complementary, independent information. Viability scores obtained from quantifying the redness of phloxine-stained colonies accurately reflect the fraction of live cells within colonies. Pyphe is user-friendly, open-source and fully documented, illustrated by applications to diverse fitness analysis scenarios. eLife Sciences Publications, Ltd 2020-06-16 /pmc/articles/PMC7297533/ /pubmed/32543370 http://dx.doi.org/10.7554/eLife.55160 Text en © 2020, Kamrad et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Genetics and Genomics Kamrad, Stephan Rodríguez-López, María Cotobal, Cristina Correia-Melo, Clara Ralser, Markus Bähler, Jürg Pyphe, a python toolbox for assessing microbial growth and cell viability in high-throughput colony screens |
title | Pyphe, a python toolbox for assessing microbial growth and cell viability in high-throughput colony screens |
title_full | Pyphe, a python toolbox for assessing microbial growth and cell viability in high-throughput colony screens |
title_fullStr | Pyphe, a python toolbox for assessing microbial growth and cell viability in high-throughput colony screens |
title_full_unstemmed | Pyphe, a python toolbox for assessing microbial growth and cell viability in high-throughput colony screens |
title_short | Pyphe, a python toolbox for assessing microbial growth and cell viability in high-throughput colony screens |
title_sort | pyphe, a python toolbox for assessing microbial growth and cell viability in high-throughput colony screens |
topic | Genetics and Genomics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297533/ https://www.ncbi.nlm.nih.gov/pubmed/32543370 http://dx.doi.org/10.7554/eLife.55160 |
work_keys_str_mv | AT kamradstephan pypheapythontoolboxforassessingmicrobialgrowthandcellviabilityinhighthroughputcolonyscreens AT rodriguezlopezmaria pypheapythontoolboxforassessingmicrobialgrowthandcellviabilityinhighthroughputcolonyscreens AT cotobalcristina pypheapythontoolboxforassessingmicrobialgrowthandcellviabilityinhighthroughputcolonyscreens AT correiameloclara pypheapythontoolboxforassessingmicrobialgrowthandcellviabilityinhighthroughputcolonyscreens AT ralsermarkus pypheapythontoolboxforassessingmicrobialgrowthandcellviabilityinhighthroughputcolonyscreens AT bahlerjurg pypheapythontoolboxforassessingmicrobialgrowthandcellviabilityinhighthroughputcolonyscreens |