Cargando…

Fluctuation suppression in microgels by polymer electrolytes

Structural details of thermoresponsive, cationically poly(N-iso-propylacrylamide-co-methacrylamido propyl trimethyl ammonium chloride) microgels and the influence of the anionic electrolyte polystyrene sulfonate (PSS) on the internal structure and dynamics of the cationic microgels have been studied...

Descripción completa

Detalles Bibliográficos
Autores principales: Pasini, S., Maccarrone, S., Székely, N. K., Stingaciu, L. R., Gelissen, A. P. H., Richtering, W., Monkenbusch, M., Holderer, O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Crystallographic Association 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297544/
https://www.ncbi.nlm.nih.gov/pubmed/32566697
http://dx.doi.org/10.1063/4.0000014
Descripción
Sumario:Structural details of thermoresponsive, cationically poly(N-iso-propylacrylamide-co-methacrylamido propyl trimethyl ammonium chloride) microgels and the influence of the anionic electrolyte polystyrene sulfonate (PSS) on the internal structure and dynamics of the cationic microgels have been studied with a combination of small angle neutron scattering (SANS) and neutron spin echo (NSE) spectroscopy. While SANS can yield information on the overall size of the particles and on the typical correlation length inside the particles, studying the segmental polymer dynamics with NSE gives access to more internal details, which only appear due to their effect on the polymer motion. The segmental dynamics of the microgels studied in this paper is to a large extent suppressed by the PSS additive. Possible scenarios of the influence of the polyanions on the microgel structure and dynamics are discussed.