Cargando…
Orthogonal Local Image Descriptors with Convolutional Autoencoders
This work proposes the use of deep learning architectures, and in particular Convolutional Autencoders (CAE’s), to incorporate an explicit component of orthogonality to the computation of local image descriptors. For this purpose we present a methodology based on the computation of dot products amon...
Autores principales: | Roman-Rangel, Edgar, Marchand-Maillet, Stephane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297571/ http://dx.doi.org/10.1007/978-3-030-49076-8_15 |
Ejemplares similares
-
Convolution Comparison Pattern: An Efficient Local Image Descriptor for Fingerprint Liveness Detection
por: Gottschlich, Carsten
Publicado: (2016) -
Hybrid autoencoder with orthogonal latent space for robust population structure inference
por: Yuan, Meng, et al.
Publicado: (2023) -
Dual Autoencoder Network with Separable Convolutional Layers for Denoising and Deblurring Images
por: Solovyeva, Elena, et al.
Publicado: (2022) -
Image-Based Detection of Modifications in Assembled PCBs with Deep Convolutional Autoencoders
por: Candido de Oliveira, Diulhio, et al.
Publicado: (2023) -
Orthogonal systems and convolution operators
por: Ellis, Robert L, et al.
Publicado: (2003)