Cargando…

What the Appearance Channel from Two-Stream Architectures for Activity Recognition Is Learning?

The automatic recognition of human activities from video data is being led by spatio-temporal Convolutional Neural Networks (3D CNNs), in particular two-stream architectures such as I3D that reports the best accuracy so far. Despite the high performance in accuracy of this kind of architectures, ver...

Descripción completa

Detalles Bibliográficos
Autores principales: Oves García, Reinier, Sucar, L. Enrique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297582/
http://dx.doi.org/10.1007/978-3-030-49076-8_24
Descripción
Sumario:The automatic recognition of human activities from video data is being led by spatio-temporal Convolutional Neural Networks (3D CNNs), in particular two-stream architectures such as I3D that reports the best accuracy so far. Despite the high performance in accuracy of this kind of architectures, very little is known about what they are really learning from data, resulting therefore in a lack of robustness and explainability. In this work we select the appearance channel from the I3D architecture and create a set of experiments aimed at explaining what this model is learning. Throughout the proposed experiments we provide evidence that this particular model is learning the texture of the largest area (which can be the activity or the background, depending on the distance from the camera to the action performed). In addition, we state several considerations to take into account when selecting the training data to achieve a better generalization of the model for human activity recognition.