Cargando…
Basic Pattern Graphs for the Efficient Computation of Its Number of Independent Sets
The problem of counting the number of independent sets of a graph G (denoted as i(G)) is a classic #P-complete problem. We present some patterns on graphs that allows us the polynomial computation of i(G). For example, we show that for a graph G where its set of cycles can be arranged as embedded cy...
Autores principales: | De Ita, Guillermo, Rodríguez, Miguel, Bello, Pedro, Contreras, Meliza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297590/ http://dx.doi.org/10.1007/978-3-030-49076-8_6 |
Ejemplares similares
-
More Sets, Graphs and Numbers
por: Gyori, Ervin, et al.
Publicado: (2006) -
A Generalized Information-Theoretic Approach for Bounding the Number of Independent Sets in Bipartite Graphs
por: Sason, Igal
Publicado: (2021) -
Efficient numerical computation of the basic reproduction number for structured populations
por: Breda, Dimitri, et al.
Publicado: (2021) -
Detecting independent and recurrent copy number aberrations using interval graphs
por: Wu, Hsin-Ta, et al.
Publicado: (2014) -
SAS/GRAPH: beyond the basics
por: Allison, Robert
Publicado: (2012)