Cargando…
Comparison of Recurrent Neural Networks for Wind Power Forecasting
Integrating wind power to the electrical grid is complicated due to the stochastic nature of the wind, which makes its prediction a challenging task. Then, it is important to devise forecasting tools to support this task. For example, a network that integrates an Echo State Network architecture and...
Autores principales: | López, Erick, Valle, Carlos, Allende-Cid, Héctor, Allende, Héctor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297597/ http://dx.doi.org/10.1007/978-3-030-49076-8_3 |
Ejemplares similares
-
A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score
por: Vivas, Eliana, et al.
Publicado: (2020) -
Polynomial and Wavelet-Type Transfer Function Models to Improve Fisheries’ Landing Forecasting with Exogenous Variables
por: Vivas, Eliana, et al.
Publicado: (2019) -
TRSWA-BP Neural Network for Dynamic Wind Power Forecasting Based on Entropy Evaluation
por: Wang, Shuangxin, et al.
Publicado: (2018) -
Claudio Moraga: a passion for multi-valued logic and soft computing
por: Seising, Rudolf, et al.
Publicado: (2017) -
Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting
por: Men, Zhongxian, et al.
Publicado: (2014)