Cargando…
Developmental competence of interspecies cloned embryos produced using cells from large Japanese field mice (Apodemus speciosus) and oocytes from laboratory mice (Mus musculus domesticus)
The large Japanese field mouse (Apodemus speciosus) is endemic to Japan and may be used as an animal model for studies related to environmental pollution, medical science, and basic biology. However, the large Japanese field mouse has low reproductive ability due to the small number of oocytes ovula...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Society for Reproduction and Development
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297636/ https://www.ncbi.nlm.nih.gov/pubmed/32213735 http://dx.doi.org/10.1262/jrd.2019-167 |
_version_ | 1783547048940797952 |
---|---|
author | AZUMA, Rika HATANAKA, Yuki SHIN, Seung-Wook MURAI, Hitoshi MIYASHITA, Minoru ANZAI, Masayuki MATSUMOTO, Kazuya |
author_facet | AZUMA, Rika HATANAKA, Yuki SHIN, Seung-Wook MURAI, Hitoshi MIYASHITA, Minoru ANZAI, Masayuki MATSUMOTO, Kazuya |
author_sort | AZUMA, Rika |
collection | PubMed |
description | The large Japanese field mouse (Apodemus speciosus) is endemic to Japan and may be used as an animal model for studies related to environmental pollution, medical science, and basic biology. However, the large Japanese field mouse has low reproductive ability due to the small number of oocytes ovulated per female. To produce experimental models, we investigated the in vitro developmental potential of interspecies somatic cell nuclear transfer (iSCNT) embryos produced by fusing tail tip cells from the large Japanese field mouse with enucleated oocytes from laboratory mice (Mus musculus domesticus). Only a small number of iSCNT embryos developed to the 4-cell (0–4%) and blastocysts (0–1%) stages under sequential treatment using trichostatin A (TSA) and vitamin C (VC) supplemented with deionized bovine serum albumin (d-BSA). This sequential treatment led to the reduction in H3K9 trimethylation and did not affect H3K4 trimethylation in at least the 2-cell stage of the iSCNT embryos. Moreover, iSCNT embryos that received tail tip cells with exposure treatment to ooplasm from cell fusion to oocyte activation or VC treatment prior to cell fusion did not exhibit significant in vitro development improvement compared to that of each control group. This suggests that large Japanese field mice/laboratory mice iSCNT embryos that received sequential treatment using TSA and VC with d-BSA may have slightly better developmental potential beyond the 4-cell stage. Our results provide insights into the reprogramming barriers impeding the wider implementation of iSCNT technology. |
format | Online Article Text |
id | pubmed-7297636 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Society for Reproduction and Development |
record_format | MEDLINE/PubMed |
spelling | pubmed-72976362020-06-22 Developmental competence of interspecies cloned embryos produced using cells from large Japanese field mice (Apodemus speciosus) and oocytes from laboratory mice (Mus musculus domesticus) AZUMA, Rika HATANAKA, Yuki SHIN, Seung-Wook MURAI, Hitoshi MIYASHITA, Minoru ANZAI, Masayuki MATSUMOTO, Kazuya J Reprod Dev Original Article The large Japanese field mouse (Apodemus speciosus) is endemic to Japan and may be used as an animal model for studies related to environmental pollution, medical science, and basic biology. However, the large Japanese field mouse has low reproductive ability due to the small number of oocytes ovulated per female. To produce experimental models, we investigated the in vitro developmental potential of interspecies somatic cell nuclear transfer (iSCNT) embryos produced by fusing tail tip cells from the large Japanese field mouse with enucleated oocytes from laboratory mice (Mus musculus domesticus). Only a small number of iSCNT embryos developed to the 4-cell (0–4%) and blastocysts (0–1%) stages under sequential treatment using trichostatin A (TSA) and vitamin C (VC) supplemented with deionized bovine serum albumin (d-BSA). This sequential treatment led to the reduction in H3K9 trimethylation and did not affect H3K4 trimethylation in at least the 2-cell stage of the iSCNT embryos. Moreover, iSCNT embryos that received tail tip cells with exposure treatment to ooplasm from cell fusion to oocyte activation or VC treatment prior to cell fusion did not exhibit significant in vitro development improvement compared to that of each control group. This suggests that large Japanese field mice/laboratory mice iSCNT embryos that received sequential treatment using TSA and VC with d-BSA may have slightly better developmental potential beyond the 4-cell stage. Our results provide insights into the reprogramming barriers impeding the wider implementation of iSCNT technology. The Society for Reproduction and Development 2020-03-26 2020-06 /pmc/articles/PMC7297636/ /pubmed/32213735 http://dx.doi.org/10.1262/jrd.2019-167 Text en ©2020 Society for Reproduction and Development This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
spellingShingle | Original Article AZUMA, Rika HATANAKA, Yuki SHIN, Seung-Wook MURAI, Hitoshi MIYASHITA, Minoru ANZAI, Masayuki MATSUMOTO, Kazuya Developmental competence of interspecies cloned embryos produced using cells from large Japanese field mice (Apodemus speciosus) and oocytes from laboratory mice (Mus musculus domesticus) |
title | Developmental competence of interspecies cloned embryos produced using cells from large Japanese field mice (Apodemus speciosus) and oocytes from
laboratory mice (Mus musculus domesticus) |
title_full | Developmental competence of interspecies cloned embryos produced using cells from large Japanese field mice (Apodemus speciosus) and oocytes from
laboratory mice (Mus musculus domesticus) |
title_fullStr | Developmental competence of interspecies cloned embryos produced using cells from large Japanese field mice (Apodemus speciosus) and oocytes from
laboratory mice (Mus musculus domesticus) |
title_full_unstemmed | Developmental competence of interspecies cloned embryos produced using cells from large Japanese field mice (Apodemus speciosus) and oocytes from
laboratory mice (Mus musculus domesticus) |
title_short | Developmental competence of interspecies cloned embryos produced using cells from large Japanese field mice (Apodemus speciosus) and oocytes from
laboratory mice (Mus musculus domesticus) |
title_sort | developmental competence of interspecies cloned embryos produced using cells from large japanese field mice (apodemus speciosus) and oocytes from
laboratory mice (mus musculus domesticus) |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297636/ https://www.ncbi.nlm.nih.gov/pubmed/32213735 http://dx.doi.org/10.1262/jrd.2019-167 |
work_keys_str_mv | AT azumarika developmentalcompetenceofinterspeciesclonedembryosproducedusingcellsfromlargejapanesefieldmiceapodemusspeciosusandoocytesfromlaboratorymicemusmusculusdomesticus AT hatanakayuki developmentalcompetenceofinterspeciesclonedembryosproducedusingcellsfromlargejapanesefieldmiceapodemusspeciosusandoocytesfromlaboratorymicemusmusculusdomesticus AT shinseungwook developmentalcompetenceofinterspeciesclonedembryosproducedusingcellsfromlargejapanesefieldmiceapodemusspeciosusandoocytesfromlaboratorymicemusmusculusdomesticus AT muraihitoshi developmentalcompetenceofinterspeciesclonedembryosproducedusingcellsfromlargejapanesefieldmiceapodemusspeciosusandoocytesfromlaboratorymicemusmusculusdomesticus AT miyashitaminoru developmentalcompetenceofinterspeciesclonedembryosproducedusingcellsfromlargejapanesefieldmiceapodemusspeciosusandoocytesfromlaboratorymicemusmusculusdomesticus AT anzaimasayuki developmentalcompetenceofinterspeciesclonedembryosproducedusingcellsfromlargejapanesefieldmiceapodemusspeciosusandoocytesfromlaboratorymicemusmusculusdomesticus AT matsumotokazuya developmentalcompetenceofinterspeciesclonedembryosproducedusingcellsfromlargejapanesefieldmiceapodemusspeciosusandoocytesfromlaboratorymicemusmusculusdomesticus |