Cargando…
A Neural Network Approach to Identify the Peritumoral Invasive Areas in Glioblastoma Patients by Using MR Radiomics
The challenge in the treatment of glioblastoma is the failure to identify the cancer invasive area outside the contrast-enhancing tumour which leads to the high local progression rate. Our study aims to identify its progression from the preoperative MR radiomics. 57 newly diagnosed cerebral glioblas...
Autores principales: | Yan, Jiun-Lin, Li, Chao, Hoorn, Anouk van der, Boonzaier, Natalie R., Matys, Tomasz, Price, Stephen J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297800/ https://www.ncbi.nlm.nih.gov/pubmed/32546790 http://dx.doi.org/10.1038/s41598-020-66691-6 |
Ejemplares similares
-
Publisher Correction: A Neural Network Approach to Identify the Peritumoral Invasive Areas in Glioblastoma Patients by Using MR Radiomics
por: Yan, Jiun-Lin, et al.
Publicado: (2020) -
Multimodal MRI characteristics of the glioblastoma infiltration beyond contrast enhancement
por: Yan, Jiun-Lin, et al.
Publicado: (2019) -
Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma
por: Li, Chao, et al.
Publicado: (2019) -
MRI radiomic features of peritumoral edema may predict the recurrence sites of glioblastoma multiforme
por: Long, Hao, et al.
Publicado: (2023) -
Low perfusion compartments in glioblastoma quantified by advanced magnetic resonance imaging and correlated with patient survival
por: Li, Chao, et al.
Publicado: (2019)