Cargando…
Multiclass EEG signal classification utilizing Rényi min-entropy-based feature selection from wavelet packet transformation
This paper proposes a novel feature selection method utilizing Rényi min-entropy-based algorithm for achieving a highly efficient brain–computer interface (BCI). Usually, wavelet packet transformation (WPT) is extensively used for feature extraction from electro-encephalogram (EEG) signals. For the...
Autores principales: | Rahman, Md. Asadur, Khanam, Farzana, Ahmad, Mohiuddin, Uddin, Mohammad Shorif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297893/ https://www.ncbi.nlm.nih.gov/pubmed/32548772 http://dx.doi.org/10.1186/s40708-020-00108-y |
Ejemplares similares
-
Wavelet Packet Entropy for Heart Murmurs Classification
por: Safara, Fatemeh, et al.
Publicado: (2012) -
Multiscale permutation Rényi entropy and its application for EEG signals
por: Yin, Yinghuang, et al.
Publicado: (2018) -
Conditional Rényi Entropy and the Relationships between Rényi Capacities
por: Aishwarya, Gautam, et al.
Publicado: (2020) -
Rényi Entropy and Rényi Divergence in Product MV-Algebras
por: Markechová, Dagmar, et al.
Publicado: (2018) -
On Rényi Permutation Entropy
por: Gutjahr, Tim, et al.
Publicado: (2021)