Cargando…
Bayesian Hyper-LASSO Classification for Feature Selection with Application to Endometrial Cancer RNA-seq Data
Feature selection is demanded in many modern scientific research problems that use high-dimensional data. A typical example is to identify gene signatures that are related to a certain disease from high-dimensional gene expression data. The expression of genes may have grouping structures, for examp...
Autores principales: | Jiang, Lai, Greenwood, Celia M. T., Yao, Weixin, Li, Longhai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297975/ https://www.ncbi.nlm.nih.gov/pubmed/32546735 http://dx.doi.org/10.1038/s41598-020-66466-z |
Ejemplares similares
-
Comparing Bayesian Variable Selection to Lasso Approaches for Applications in Psychology
por: Bainter, Sierra A., et al.
Publicado: (2023) -
Classification and Selection of Biomarkers in Genomic Data Using LASSO
por: Ghosh, Debashis, et al.
Publicado: (2005) -
Bayesian Lasso and multinomial logistic regression on GPU
por: Češnovar, Rok, et al.
Publicado: (2017) -
Ridge, Lasso and Bayesian additive-dominance genomic models
por: Azevedo, Camila Ferreira, et al.
Publicado: (2015) -
Analysis of Twitter data with the Bayesian fused graphical lasso
por: Aflakparast, Mehran, et al.
Publicado: (2020)