Cargando…
Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals
EEG signal processing is a fundamental method for neurophysiology research and clinical neurology practice. Historically the classification of EEG into physiological, pathological, or artifacts has been performed by expert visual review of the recordings. However, the size of EEG data recordings is...
Autores principales: | Nejedly, Petr, Kremen, Vaclav, Sladky, Vladimir, Cimbalnik, Jan, Klimes, Petr, Plesinger, Filip, Mivalt, Filip, Travnicek, Vojtech, Viscor, Ivo, Pail, Martin, Halamek, Josef, Brinkmann, Benjamin H., Brazdil, Milan, Jurak, Pavel, Worrell, Gregory |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297990/ https://www.ncbi.nlm.nih.gov/pubmed/32546753 http://dx.doi.org/10.1038/s41597-020-0532-5 |
Ejemplares similares
-
Exploiting Graphoelements and Convolutional Neural Networks with Long Short Term Memory for Classification of the Human Electroencephalogram
por: Nejedly, P., et al.
Publicado: (2019) -
Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
por: Nejedly, Petr, et al.
Publicado: (2018) -
Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
por: Nejedly, Petr, et al.
Publicado: (2023) -
Shadows of very high-frequency oscillations can be detected in lower frequency bands of routine stereoelectroencephalography
por: Vasickova, Zuzana, et al.
Publicado: (2023) -
Interictal invasive very high-frequency oscillations in resting awake state and sleep
por: Revajová, Karin, et al.
Publicado: (2023)