Cargando…

Phloem sap in Cretaceous ambers as abundant double emulsions preserving organic and inorganic residues

Fossilized remains preserved in amber provide abundant data on the paleobiota surrounding the resin-producing plants, but relatively scarcer information about the resinous sources themselves. Here, dark pseudoinclusions in kidney-shaped amber pieces from the Early Cretaceous (Albian) amber from Spai...

Descripción completa

Detalles Bibliográficos
Autores principales: Lozano, Rafael Pablo, Pérez-de la Fuente, Ricardo, Barrón, Eduardo, Rodrigo, Ana, Viejo, José Luis, Peñalver, Enrique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297994/
https://www.ncbi.nlm.nih.gov/pubmed/32546844
http://dx.doi.org/10.1038/s41598-020-66631-4
Descripción
Sumario:Fossilized remains preserved in amber provide abundant data on the paleobiota surrounding the resin-producing plants, but relatively scarcer information about the resinous sources themselves. Here, dark pseudoinclusions in kidney-shaped amber pieces from the Early Cretaceous (Albian) amber from Spain are studied. This type of fossilized remain, abundant in Cretaceous ambers, was first interpreted as fossilized vacuole-bearing microorganisms, but later regarded as artifactual and probably secreted by the resinous trees, although their origin remained unclear. Using complementary microscopy (light, electron, confocal), spectroscopy (infrared, micro-Raman), mass spectrometry and elemental analysis techniques, we demonstrate that the pseudoinclusions correspond to droplets of phloem sap containing amber spheroids and preserving both organic and inorganic residues consistent with degraded components from the original sap. The amber pieces containing pseudoinclusions are fossilized, resin-in-sap-in-resin double emulsions, showing banding patterns with differential content of resin-in-sap emulsion droplets. Our findings represent the first time fossilized phloem sap, 105 million years old, has been recognized and characterized, and open new lines of paleontological research with taxonomic, taphonomic, physiological and ecological implications.