Cargando…
Parameters of the Earth’s Free Core Nutation from Diurnal Strain Tides
Earth deformation at the diurnal tidal frequencies includes the resonant tidal-forcing response caused by the Free Core Nutation (FCN), a retrograde mode related to the slight misalignment of the rotation axes of the outer core and mantle. We analyse data from four underground high-sensitivity laser...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298015/ https://www.ncbi.nlm.nih.gov/pubmed/32546761 http://dx.doi.org/10.1038/s41598-020-66426-7 |
_version_ | 1783547125368356864 |
---|---|
author | Amoruso, Antonella Crescentini, Luca |
author_facet | Amoruso, Antonella Crescentini, Luca |
author_sort | Amoruso, Antonella |
collection | PubMed |
description | Earth deformation at the diurnal tidal frequencies includes the resonant tidal-forcing response caused by the Free Core Nutation (FCN), a retrograde mode related to the slight misalignment of the rotation axes of the outer core and mantle. We analyse data from four underground high-sensitivity laser extensometers, whose signal-to-noise ratio in the diurnal tidal band is particularly high, and provide an alternative independent estimate of the FCN complex frequency with respect to more usual techniques (nutation and gravity). Firstly, we differentiate displacements due to diurnal solid tides to obtain extension along any azimuthal direction in terms of three complex parameters (A, S, C) which depend on latitude and frequency. Then, we demonstrate that we can invert the FCN complex frequency and the sensitivity of Im(A) and Re(S) to the resonance from our data. Lastly we obtain the probability distributions of those four parameters. Our results are in full agreement with those from nutation and gravity, as well as with reference IERS (International Earth Rotation and Reference Systems Service) values. Sensitivities of Im(A) and Re(S) to the resonance are estimated here for the first time and are in agreement with values computed using reference Love and Shida numbers from IERS. |
format | Online Article Text |
id | pubmed-7298015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-72980152020-06-18 Parameters of the Earth’s Free Core Nutation from Diurnal Strain Tides Amoruso, Antonella Crescentini, Luca Sci Rep Article Earth deformation at the diurnal tidal frequencies includes the resonant tidal-forcing response caused by the Free Core Nutation (FCN), a retrograde mode related to the slight misalignment of the rotation axes of the outer core and mantle. We analyse data from four underground high-sensitivity laser extensometers, whose signal-to-noise ratio in the diurnal tidal band is particularly high, and provide an alternative independent estimate of the FCN complex frequency with respect to more usual techniques (nutation and gravity). Firstly, we differentiate displacements due to diurnal solid tides to obtain extension along any azimuthal direction in terms of three complex parameters (A, S, C) which depend on latitude and frequency. Then, we demonstrate that we can invert the FCN complex frequency and the sensitivity of Im(A) and Re(S) to the resonance from our data. Lastly we obtain the probability distributions of those four parameters. Our results are in full agreement with those from nutation and gravity, as well as with reference IERS (International Earth Rotation and Reference Systems Service) values. Sensitivities of Im(A) and Re(S) to the resonance are estimated here for the first time and are in agreement with values computed using reference Love and Shida numbers from IERS. Nature Publishing Group UK 2020-06-16 /pmc/articles/PMC7298015/ /pubmed/32546761 http://dx.doi.org/10.1038/s41598-020-66426-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Amoruso, Antonella Crescentini, Luca Parameters of the Earth’s Free Core Nutation from Diurnal Strain Tides |
title | Parameters of the Earth’s Free Core Nutation from Diurnal Strain Tides |
title_full | Parameters of the Earth’s Free Core Nutation from Diurnal Strain Tides |
title_fullStr | Parameters of the Earth’s Free Core Nutation from Diurnal Strain Tides |
title_full_unstemmed | Parameters of the Earth’s Free Core Nutation from Diurnal Strain Tides |
title_short | Parameters of the Earth’s Free Core Nutation from Diurnal Strain Tides |
title_sort | parameters of the earth’s free core nutation from diurnal strain tides |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298015/ https://www.ncbi.nlm.nih.gov/pubmed/32546761 http://dx.doi.org/10.1038/s41598-020-66426-7 |
work_keys_str_mv | AT amorusoantonella parametersoftheearthsfreecorenutationfromdiurnalstraintides AT crescentiniluca parametersoftheearthsfreecorenutationfromdiurnalstraintides |