Cargando…
Natural Language Generation Using Transformer Network in an Open-Domain Setting
Prior works on dialog generation focus on task-oriented setting and utilize multi-turn conversational utterance-response pairs. However, natural language generation (NLG) in the open-domain environment is more challenging. The conversations in an open-domain chit-chat model are mostly single-turn in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298179/ http://dx.doi.org/10.1007/978-3-030-51310-8_8 |
Sumario: | Prior works on dialog generation focus on task-oriented setting and utilize multi-turn conversational utterance-response pairs. However, natural language generation (NLG) in the open-domain environment is more challenging. The conversations in an open-domain chit-chat model are mostly single-turn in nature. Current methods used for modeling single-turn conversations often fail to generate contextually relevant responses for a large dataset. In our work, we develop a transformer-based method for natural language generation (NLG) in an open-domain setting. Experiments on the utterance-response pairs show improvement over the baselines, both in terms of quantitative measures like BLEU and ROUGE and human evaluation metrics like fluency and adequacy. |
---|