Cargando…
Improving Named Entity Recognition for Biomedical and Patent Data Using Bi-LSTM Deep Neural Network Models
The daily exponential increase of biomedical information in scientific literature and patents is a main obstacle to foster advances in biomedical research. A fundamental step hereby is to find key information (named entities) inside these publications applying Biomedical Named Entities Recognition (...
Autores principales: | Saad, Farag, Aras, Hidir, Hackl-Sommer, René |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298184/ http://dx.doi.org/10.1007/978-3-030-51310-8_3 |
Ejemplares similares
-
CollaboNet: collaboration of deep neural networks for biomedical named entity recognition
por: Yoon, Wonjin, et al.
Publicado: (2019) -
Biomedical named entity recognition using deep neural networks with contextual information
por: Cho, Hyejin, et al.
Publicado: (2019) -
Transfer learning for biomedical named entity recognition with neural networks
por: Giorgi, John M, et al.
Publicado: (2018) -
Deep learning for named entity recognition on Chinese electronic medical records: Combining deep transfer learning with multitask bi-directional LSTM RNN
por: Dong, Xishuang, et al.
Publicado: (2019) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017)