Cargando…

Causal Relationship between Celiac Stenosis and Pancreaticoduodenal Artery Aneurysm: Interpretation by Simulation Using an Electric Circuit

Pancreaticoduodenal artery (PDA) aneurysm and celiac artery (CA) stenosis are rare diseases in themselves. Interestingly, however, there are more cases documented in the literature in which these two disease entities occurred together than could be coincidental, and CA stenosis has been suggested as...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoon, Hye Jeong, Choi, Jeong Sik, Shin, Woo Young, Lee, Keon-Young, Ahn, Seung-Ik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298276/
https://www.ncbi.nlm.nih.gov/pubmed/32596287
http://dx.doi.org/10.1155/2020/2738726
Descripción
Sumario:Pancreaticoduodenal artery (PDA) aneurysm and celiac artery (CA) stenosis are rare diseases in themselves. Interestingly, however, there are more cases documented in the literature in which these two disease entities occurred together than could be coincidental, and CA stenosis has been suggested as the provocative condition in developing PDA aneurysm. This study is aimed at examining the causal relationship between CA stenosis and PDA aneurysm by simulating the splanchnic circulation with an electric circuit. A patient with multiple PDA aneurysms and collaterals with CA stenosis was treated in our institution using hybrid techniques. The patient's pre- and postoperative status was simulated using an electric circuit, and the two possible scenarios were tested for compatibility: the stenosis-first scenario vs. the aneurysm-first scenario. The simulation was performed in two ways: using Simulink® software (MATLAB® Release 2018b) and actual circuit construction on a breadboard. The stenosis-first scenario showed that as the CA stenosis progresses, the blood flow through PDA increases, favoring the development of an aneurysm and/or collaterals if the artery was already compromised by a weakening condition. On the other hand, the aneurysm-first scenario also showed that if the aneurysm or collaterals developed first, the aneurysm will steal the blood flow through the CA, causing it to collapse if the artery was already compromised by increased wall tension. Contrary to the common belief, this study showed that in patients suffering from concurrent CA stenosis and PDA aneurysm, either condition could develop first and predispose the development of the other. The simulation of splanchnic blood flow with an electric circuit provides a useful tool for analyzing rare vascular diseases that are difficult to provoke in clinical and animal studies.