Cargando…
Deep learning predicts microbial interactions from self-organized spatiotemporal patterns
Microbial communities organize into spatial patterns that are largely governed by interspecies interactions. This phenomenon is an important metric for understanding community functional dynamics, yet the use of spatial patterns for predicting microbial interactions is currently lacking. Here we pro...
Autores principales: | Lee, Joon-Yong, Sadler, Natalie C., Egbert, Robert G., Anderton, Christopher R., Hofmockel, Kirsten S., Jansson, Janet K., Song, Hyun-Seob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298420/ https://www.ncbi.nlm.nih.gov/pubmed/32612750 http://dx.doi.org/10.1016/j.csbj.2020.05.023 |
Ejemplares similares
-
Visualizing Microbial Community Dynamics via a Controllable Soil Environment
por: Bhattacharjee, Arunima, et al.
Publicado: (2020) -
Interaction Networks Are Driven by Community-Responsive Phenotypes in a Chitin-Degrading Consortium of Soil Microbes
por: McClure, Ryan, et al.
Publicado: (2022) -
Demonstrating microbial co-occurrence pattern analyses within and between ecosystems
por: Williams, Ryan J., et al.
Publicado: (2014) -
Fungal organic acid uptake of mineral-derived K is dependent on distance from carbon hotspot
por: Bhattacharjee, Arunima, et al.
Publicado: (2023) -
Synthetic Soil Aggregates: Bioprinted Habitats for High-Throughput Microbial Metaphenomics
por: Smercina, Darian, et al.
Publicado: (2022)