Cargando…
Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India
In this paper, Deep Learning-based models are used for predicting the number of novel coronavirus (COVID-19) positive reported cases for 32 states and union territories of India. Recurrent neural network (RNN) based long-short term memory (LSTM) variants such as Deep LSTM, Convolutional LSTM and Bi-...
Autores principales: | Arora, Parul, Kumar, Himanshu, Panigrahi, Bijaya Ketan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298499/ https://www.ncbi.nlm.nih.gov/pubmed/32572310 http://dx.doi.org/10.1016/j.chaos.2020.110017 |
Ejemplares similares
-
Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices
por: Ahuja, Sakshi, et al.
Publicado: (2020) -
Transfer learning–based ensemble support vector machine model for automated COVID-19 detection using lung computerized tomography scan data
por: Singh, Mukul, et al.
Publicado: (2021) -
Swarm, evolutionary, and memetic computing: 5th international conference, SEMCCO 2014, Bhubaneswar, India, December 18-20, 2014, revised selected papers
por: Panigrahi, Bijaya Ketan, et al.
Publicado: (2015) -
Swarm, evolutionary, and memetic computing: second international conference, SEMCCO 2011, Visakhapatnam, India, December 19-21, 2011, proceedings, part I
por: Panigrahi, Bijaya Ketan, et al.
Publicado: (2011) -
Swarm, evolutionary, and memetic computing: 6th international conference, SEMCCO 2015, Hyderabad, India, December 18-19, 2015, revised selected papers
por: Panigrahi, Bijaya Ketan, et al.
Publicado: (2016)