Cargando…
Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients
The heterogeneity of cognitive profiles among psychiatric patients has been reported to carry significant clinical information. However, how to best characterize such cognitive heterogeneity is still a matter of debate. Despite being well suited for clinical data, cluster analysis techniques, like t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299079/ https://www.ncbi.nlm.nih.gov/pubmed/32587546 http://dx.doi.org/10.3389/fpsyg.2020.01085 |
_version_ | 1783547331988160512 |
---|---|
author | Benassi, Mariagrazia Garofalo, Sara Ambrosini, Federica Sant’Angelo, Rosa Patrizia Raggini, Roberta De Paoli, Giovanni Ravani, Claudio Giovagnoli, Sara Orsoni, Matteo Piraccini, Giovanni |
author_facet | Benassi, Mariagrazia Garofalo, Sara Ambrosini, Federica Sant’Angelo, Rosa Patrizia Raggini, Roberta De Paoli, Giovanni Ravani, Claudio Giovagnoli, Sara Orsoni, Matteo Piraccini, Giovanni |
author_sort | Benassi, Mariagrazia |
collection | PubMed |
description | The heterogeneity of cognitive profiles among psychiatric patients has been reported to carry significant clinical information. However, how to best characterize such cognitive heterogeneity is still a matter of debate. Despite being well suited for clinical data, cluster analysis techniques, like the Two-Step and the Latent Class, received little to no attention in the literature. The present study aimed to test the validity of the cluster solutions obtained with Two-Step and Latent Class cluster analysis on the cognitive profile of a cross-diagnostic sample of 387 psychiatric inpatients. Two-Step and Latent Class cluster analysis produced similar and reliable solutions. The overall results reported that it is possible to group all psychiatric inpatients into Low and High Cognitive Profiles, with a higher degree of cognitive heterogeneity in schizophrenia and bipolar disorder patients than in depressive disorders and personality disorder patients. |
format | Online Article Text |
id | pubmed-7299079 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72990792020-06-24 Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients Benassi, Mariagrazia Garofalo, Sara Ambrosini, Federica Sant’Angelo, Rosa Patrizia Raggini, Roberta De Paoli, Giovanni Ravani, Claudio Giovagnoli, Sara Orsoni, Matteo Piraccini, Giovanni Front Psychol Psychology The heterogeneity of cognitive profiles among psychiatric patients has been reported to carry significant clinical information. However, how to best characterize such cognitive heterogeneity is still a matter of debate. Despite being well suited for clinical data, cluster analysis techniques, like the Two-Step and the Latent Class, received little to no attention in the literature. The present study aimed to test the validity of the cluster solutions obtained with Two-Step and Latent Class cluster analysis on the cognitive profile of a cross-diagnostic sample of 387 psychiatric inpatients. Two-Step and Latent Class cluster analysis produced similar and reliable solutions. The overall results reported that it is possible to group all psychiatric inpatients into Low and High Cognitive Profiles, with a higher degree of cognitive heterogeneity in schizophrenia and bipolar disorder patients than in depressive disorders and personality disorder patients. Frontiers Media S.A. 2020-06-10 /pmc/articles/PMC7299079/ /pubmed/32587546 http://dx.doi.org/10.3389/fpsyg.2020.01085 Text en Copyright © 2020 Benassi, Garofalo, Ambrosini, Sant’Angelo, Raggini, De Paoli, Ravani, Giovagnoli, Orsoni and Piraccini. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychology Benassi, Mariagrazia Garofalo, Sara Ambrosini, Federica Sant’Angelo, Rosa Patrizia Raggini, Roberta De Paoli, Giovanni Ravani, Claudio Giovagnoli, Sara Orsoni, Matteo Piraccini, Giovanni Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients |
title | Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients |
title_full | Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients |
title_fullStr | Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients |
title_full_unstemmed | Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients |
title_short | Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients |
title_sort | using two-step cluster analysis and latent class cluster analysis to classify the cognitive heterogeneity of cross-diagnostic psychiatric inpatients |
topic | Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299079/ https://www.ncbi.nlm.nih.gov/pubmed/32587546 http://dx.doi.org/10.3389/fpsyg.2020.01085 |
work_keys_str_mv | AT benassimariagrazia usingtwostepclusteranalysisandlatentclassclusteranalysistoclassifythecognitiveheterogeneityofcrossdiagnosticpsychiatricinpatients AT garofalosara usingtwostepclusteranalysisandlatentclassclusteranalysistoclassifythecognitiveheterogeneityofcrossdiagnosticpsychiatricinpatients AT ambrosinifederica usingtwostepclusteranalysisandlatentclassclusteranalysistoclassifythecognitiveheterogeneityofcrossdiagnosticpsychiatricinpatients AT santangelorosapatrizia usingtwostepclusteranalysisandlatentclassclusteranalysistoclassifythecognitiveheterogeneityofcrossdiagnosticpsychiatricinpatients AT ragginiroberta usingtwostepclusteranalysisandlatentclassclusteranalysistoclassifythecognitiveheterogeneityofcrossdiagnosticpsychiatricinpatients AT depaoligiovanni usingtwostepclusteranalysisandlatentclassclusteranalysistoclassifythecognitiveheterogeneityofcrossdiagnosticpsychiatricinpatients AT ravaniclaudio usingtwostepclusteranalysisandlatentclassclusteranalysistoclassifythecognitiveheterogeneityofcrossdiagnosticpsychiatricinpatients AT giovagnolisara usingtwostepclusteranalysisandlatentclassclusteranalysistoclassifythecognitiveheterogeneityofcrossdiagnosticpsychiatricinpatients AT orsonimatteo usingtwostepclusteranalysisandlatentclassclusteranalysistoclassifythecognitiveheterogeneityofcrossdiagnosticpsychiatricinpatients AT piraccinigiovanni usingtwostepclusteranalysisandlatentclassclusteranalysistoclassifythecognitiveheterogeneityofcrossdiagnosticpsychiatricinpatients |