Cargando…
CAFU: a Galaxy framework for exploring unmapped RNA-Seq data
A widely used approach in transcriptome analysis is the alignment of short reads to a reference genome. However, owing to the deficiencies of specially designed analytical systems, short reads unmapped to the genome sequence are usually ignored, resulting in the loss of significant biological inform...
Autores principales: | Chen, Siyuan, Ren, Chengzhi, Zhai, Jingjing, Yu, Jiantao, Zhao, Xuyang, Li, Zelong, Zhang, Ting, Ma, Wenlong, Han, Zhaoxue, Ma, Chuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299299/ https://www.ncbi.nlm.nih.gov/pubmed/30815667 http://dx.doi.org/10.1093/bib/bbz018 |
Ejemplares similares
-
Self-supervised contrastive learning for integrative single cell RNA-seq data analysis
por: Han, Wenkai, et al.
Publicado: (2022) -
CODA: a combo-Seq data analysis workflow
por: Nazzari, Marta, et al.
Publicado: (2022) -
Quantum annealing-based clustering of single cell RNA-seq data
por: Kubacki, Michal, et al.
Publicado: (2023) -
OPUS-Rota4: a gradient-based protein side-chain modeling framework assisted by deep learning-based predictors
por: Xu, Gang, et al.
Publicado: (2021) -
Consensus clustering of single-cell RNA-seq data by enhancing network affinity
por: Cui, Yaxuan, et al.
Publicado: (2021)