Cargando…
Identifying and predicting Parkinson’s disease subtypes through trajectory clustering via bipartite networks
Chronic medical conditions show substantial heterogeneity in their clinical features and progression. We develop the novel data-driven, network-based Trajectory Profile Clustering (TPC) algorithm for 1) identification of disease subtypes and 2) early prediction of subtype/disease progression pattern...
Autores principales: | Krishnagopal, Sanjukta, von Coelln, Rainer, Shulman, Lisa M., Girvan, Michelle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299311/ https://www.ncbi.nlm.nih.gov/pubmed/32555729 http://dx.doi.org/10.1371/journal.pone.0233296 |
Ejemplares similares
-
Stroke recovery phenotyping through network trajectory approaches and graph neural networks
por: Krishnagopal, Sanjukta, et al.
Publicado: (2022) -
The collective vs individual nature of mountaineering: a network and simplicial approach
por: Krishnagopal, Sanjukta
Publicado: (2022) -
Genome-Wide Association Study Meta-Analysis for Parkinson Disease Motor Subtypes
por: Alfradique-Dunham, Isabel, et al.
Publicado: (2021) -
Confirming Parkinson Disease Diagnosis: Patterns of Diagnostic Changes by Movement Disorder Specialists
por: Keshtkarjahromi, Marzieh, et al.
Publicado: (2022) -
A novel clustering approach to bipartite investor-startup networks
por: Carniel, Théophile, et al.
Publicado: (2023)