Cargando…
Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference
OBJECTIVE: To clinically validate a fully automated deep convolutional neural network (DCNN) for detection of surgically proven meniscus tears. MATERIALS AND METHODS: One hundred consecutive patients were retrospectively included, who underwent knee MRI and knee arthroscopy in our institution. All M...
Autores principales: | Fritz, Benjamin, Marbach, Giuseppe, Civardi, Francesco, Fucentese, Sandro F., Pfirrmann, Christian W.A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299917/ https://www.ncbi.nlm.nih.gov/pubmed/32170334 http://dx.doi.org/10.1007/s00256-020-03410-2 |
Ejemplares similares
-
Correction to: Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference
por: Fritz, Benjamin, et al.
Publicado: (2020) -
Deep Convolutional Neural Network–Based Diagnosis of Anterior Cruciate Ligament Tears: Performance Comparison of Homogenous Versus Heterogeneous Knee MRI Cohorts With Different Pulse Sequence Protocols and 1.5-T and 3-T Magnetic Field Strengths
por: Germann, Christoph, et al.
Publicado: (2020) -
Development of convolutional neural network model for diagnosing meniscus tear using magnetic resonance image
por: Shin, Hyunkwang, et al.
Publicado: (2022) -
Radiologists versus Deep Convolutional Neural Networks: A Comparative Study for Diagnosing COVID-19
por: Helwan, Abdulkader, et al.
Publicado: (2021) -
Measurement method of tear meniscus height based on deep learning
por: Wan, Cheng, et al.
Publicado: (2023)