Cargando…

Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes?

Monitoring the Earth’s stress state plays a role in our understanding of an earthquake’s mechanism and in the distribution of hazards. Crustal deformation due to the July 2019 earthquake sequence in Ridgecrest (California) that culminated in a preceding quake of magnitude (M) 6.4 and a subsequent M7...

Descripción completa

Detalles Bibliográficos
Autor principal: Nanjo, K. Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299982/
https://www.ncbi.nlm.nih.gov/pubmed/32555220
http://dx.doi.org/10.1038/s41467-020-16867-5
Descripción
Sumario:Monitoring the Earth’s stress state plays a role in our understanding of an earthquake’s mechanism and in the distribution of hazards. Crustal deformation due to the July 2019 earthquake sequence in Ridgecrest (California) that culminated in a preceding quake of magnitude (M) 6.4 and a subsequent M7.1 quake caused stress perturbation in a nearby region, but implications of future seismicity are still uncertain. Here, the occurrence of small earthquakes is compared to larger ones, using b-values, showing that the rupture initiation from an area of low b-values, indicative of high stress, was common to both M6.4 and M7.1 quakes. The post-M7.1-quake sequence reveals that another low-b-value zone, which avoided its ruptured area, fell into an area near the Garlock fault that hosted past large earthquakes. If this area were more stressed, there would be a high-likelihood of further activation of seismicity that might influence the Garlock fault.